

ENVIRONMENT ACT 1995 PART IV

LOCAL AIR QUALITY MANAGEMENT

Air Quality Updating and Screening Assessment

City of Norwich

January 2004

WG Kasprzok Head of Environmental Health Services Norwich City Council

AEA Technology/netcen/ED49204/Issue 1

Title	Air Quality Updating and Screening Assessment for Norwich City Council				
Customer	Norwich City Council				
Customer reference	ED49204001				
Confidentiality, copyright and reproduction					
File reference	Norfolk Group\Norwich City	<i>y</i>			
Report number					
Report status	Unrestricted				
	Kate Haigh netcen E5, 44 Culham Science Centre Abingdon Oxon. OX14 3ED Telephone 0870 190 6484 Facsimile 0870 190 6607 AEA Technology is the tradir AEA Technology is certificate	ng name of AEA Technology plc			
	Name	Signature	Date		
Authors	Kate Haigh				
Reviewed by	John Abbott				
Approved by	Geoff Dollard				

ii

Executive Summary

The UK Government published its strategic policy framework for air quality management in 1995 establishing national strategies and policies on air quality which culminated in the Environment Act, 1995. The Air Quality Strategy¹ provides a framework for air quality control through air quality management and air quality standards. These and other air quality standards¹ and their objectives have been enacted through the Air Quality Regulations in 1997, 2000 and 2002². The Environment Act 1995 requires Local Authorities to undertake air quality reviews. In areas where an air quality objective is not anticipated to be met, Local Authorities are required to establish Air Quality Management Areas and implement action plans to improve air quality.

The first round of air quality review and assessments has now been now completed for Norwich City Council. The Local Authority are now required to proceed to the second round of review and assessment in which sources of emissions to air are reassessed to identify whether the situation has changed since the first round, and if so, what impact this may have on predicted exceedences of the air quality objectives.

The second round of review and assessment is to be undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 review and assessment previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedence is identified for a pollutant it will be necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead.

This report is equivalent to an Updating and Screening Assessment for Norwich City Council as outlined in the Government's published guidance.

iii

¹ Refers to standards recommended by the Expert Panel on Air Quality Standards. Recommended standards are set purely with regard to scientific and medical evidence on the effects of the particular pollutants on health, at levels at which risks to public health, including vulnerable groups, are very small or regarded as negligible.

In the last round of the review and assessment process Norwich City Council completed a Stage 3 Air Quality Review and Assessment. The results of this indicated that there are areas of Norwich almost certain to exceed the annual mean objective for nitrogen dioxide (NO₂). As a result of this air quality review and assessment, Norwich City Council has declared three Air Quality Management Areas (AQMAs) within the city at Grapes Hill, the Castle area and St Augustines Street.

A Stage 4 review and assessment was then completed which further assessed the monitoring and modelling data in these AQMAs. Results from this work concluded that while the three AQMAs should be retained, two of these , Grapes Hill and the Castle area AQMAs, could be decreased in area.

The general approach taken to this Updating and Screening Assessment was to:

- Identify the conclusions of the last round of review and assessment for each of the seven pollutants included in the air quality regulations;
- Identify significant sources of emissions to air for the seven pollutants included in the air quality regulations, including major roads and industrial plant;
- Identify new sources not previously considered in the first round of review and assessment;
- Identify any sources for which emissions have changed significantly since the last round of review and assessment;
- Identify and interpret the significance of air quality monitoring data made available since the last round of review and assessment;
- Assess the risk of exceedences of the air quality objectives in locations where relative public exposure may exist using screening models and nomograms; and
- Where necessary, identify locations and pollutants for which further detailed assessment of air quality will be required.

A checklist identifying the considerations in this report is shown in Appendix 5.

What are the conclusions of this report for Norwich City Council?

This updating and screening assessment for Norwich City Council has concluded that a detailed assessment is not required for NO_{2} , PM_{10} , Benzene, Carbon Monoxide, Lead, 1,3 – butadiene or sulphur dioxide.

What does Norwich City Council need to do now?

A Stage 3 review and assessment was completed in July 2003. Following this Norwich City Council need to produce an Action Plan. In addition, Norwich City Council need to complete a Progress Report and submit to DEFRA by April 2004. This could include the annual progress on the Action Plan for the three declared AQMAs.

Acronyms and definitions used in this report

AADTF Annual Average Daily Traffic Flow ADMS an atmospheric dispersion model

AQDD an EU directive (part of EU law) - Common Position on Air Quality Daughter

Directives, commonly referred to as the Air Quality Daughter Directive

AQMA Air Quality Management Area

AQS Air Quality Strategy

AP Action Plan

AUN Automatic Urban Network (DEFRA funded network)

Base case in the context of this report, the emissions or concentrations predicted at the date

of the relevant air quality objective (2005 for nitrogen dioxide)

CO Carbon monoxide

d.f. degrees of freedom (in statistical analysis of data)

DETR Department of the Environment Transport and the Regions (now DEFRA)

DEFRA Department of the Environment, Food and Rural Affairs

DMRB Design Manual for Roads and Bridges

EA Environment Agency

EPA Environmental Protection Act

EPAQS Expert Panel on Air Quality Standards (UK panel)

EU European Union

GIS Geographical Information System

HA Highways Agency
HDV Heavy Duty Vehicles
kerbside 0 to 1 m from the kerb

LADS Urban background model specifically developed for Stage 3 Review and

Assessment work by netcen. This model allowed contributions of the urban

background and road traffic emissions to be calculated

Limit Value An EU definition for an air quality standard of a pollutant listed in the air quality

directives

NAEI National Atmospheric Emissions Inventory

NO₂ Nitrogen dioxide NO_v Oxides of nitrogen

NRTF National Road Traffic Forecast

ppb parts per billion

r the correlation coefficient (between two variables)

receptor In the context of this study, the relevant location where air quality is assessed or

predicted (for example, houses, hospitals and schools)

roadside 1 to 5 m from the kerb

SD standard deviation (of a range of data)

SO₂ Sulphur dioxide

TEMPRO A piece of software produced by the DEFRA used to forecast traffic flow increases

vi

Contents

1	INT	RODUCTION TO THE UPDATING AND SCREENING ASSESSMENT	1
	1.1	PURPOSE OF THE UPDATING AND SCREENING ASSESSMENT	
	1.2	OVERVIEW OF APPROACH TAKEN	
	1.3	RELEVANT DEFRA DOCUMENTATION USED	
	1.4	POLLUTANTS CONSIDERED IN THIS REPORT	
	1.5	STRUCTURE OF THE REPORT	
2	INF	ORMATION USED TO SUPPORT THIS ASSESSMENT	5
	2.1	CONCLUSIONS FROM THE FIRST ROUND OF REVIEW AND ASSESSMENT OF AIR QUALITY FOR	
		NORWICH CITY COUNCIL	
	2.2	PROPOSED DEVELOPMENTS WHICH MAY AFFECT AIR QUALITY	
	2.3	MAPS AND DISTANCES OF RECEPTORS FROM ROADS	
	2.4	ROAD TRAFFIC DATA	
	2.5	PART A AND B PROCESSES	
	2.6	AMBIENT MONITORING	
3	UPD	ATING AND SCREENING ASSESSMENT FOR CARBON MONOXIDE	7
	3.1	THE NATIONAL PERSPECTIVE	7
	3.2	STANDARD AND OBJECTIVE FOR CARBON MONOXIDE	7
	3.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR CARBON MONOXIDE	
	3.4	SCREENING ASSESSMENT OF CARBON MONOXIDE	7
	3.5	BACKGROUND CONCENTRATIONS FOR CARBON MONOXIDE	
	3.6	SCREENING ASSESSMENT OF MONITORING DATA	
	3.7	SCREENING ASSESSMENT OF VERY BUSY ROADS/JUNCTIONS	
	3.8	CONCLUSIONS FOR CARBON MONOXIDE CONCENTRATIONS IN NORWICH CITY DISTICT COUNC	
4	UPD	ATING AND SCREENING ASSESSMENT FOR BENZENE	9
	4.1	THE NATIONAL PERSPECTIVE	9
	4.2	STANDARD AND OBJECTIVE FOR BENZENE	
	4.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR BENZENE	
	4.4	SCREENING ASSESSMENT OF BENZENE	
	4.5	BACKGROUND CONCENTRATIONS FOR BENZENE	
	4.6	SCREENING ASSESSMENT OF MONITORING DATA	
	4.7	SCREENING ASSESSMENT OF VERY BUSY ROADS/JUNCTIONS	
	4.8	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	
	4.9	SCREENING ASSESSMENT OF PETROL STATIONS	
	4.10	SCREENING ASSESSMENT OF FUEL STORAGE DEPOTS	
	4.11		
5	UPD	ATING AND SCREENING ASSESSMENT FOR 1,3-BUTADIENE	12
	5.1	THE NATIONAL PERSPECTIVE	
	5.2	STANDARD AND OBJECTIVE FOR 1,3-BUTADIENE	
	5.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR 1,3-BUTADIENE	
	5.4	SCREENING ASSESSMENT OF 1,3-BUTADIENE	
	5.5	BACKGROUND CONCENTRATIONS FOR 1,3-BUTADIENE	
	5.6	SCREENING ASSESSMENT OF MONITORING DATA	
	5.7 5.8	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	
	~ ×	CONCLUSIONS FOR LISTRICADIENE CONCENTRATIONS IN MODWICH CITY COUNCIL ADEA	- 13

6	UPD	OATING AND SCREENING ASSESSMENT FOR LEAD	14
(6.1	THE NATIONAL PERSPECTIVE	14
(6.2	STANDARD AND OBJECTIVE FOR LEAD	14
(6.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR LEAD	14
(6.4	SCREENING ASSESSMENT OF LEAD	14
(6.5	SCREENING ASSESSMENT OF MONITORING DATA	14
(6.6	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	14
(6.7	CONCLUSIONS FOR LEAD CONCENTRATIONS IN NORWICH CITY COUNCIL	15
7	UPD	DATING AND SCREENING ASSESSMENT FOR NITROGEN DIOXIDE	16
	7.1	INTRODUCTION	16
•	7.2	STANDARDS AND OBJECTIVES FOR NITROGEN DIOXIDE	16
•	7.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR NITROGEN DIOXIDE	16
•	7.4	SCREENING ASSESSMENT OF NITROGEN DIOXIDE	16
•	7.5	BACKGROUND CONCENTRATIONS FOR NITROGEN DIOXIDE	17
•	7.6	SCREENING ASSESSMENT OF MONITORING DATA	17
•	7.7	SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES	23
	7.8	FURTHER ASSESSMENT OF ROAD TRAFFIC SOURCES	
•	7.9	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	25
•	7.10	SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES	26
•	7.11	CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN NORWICH CITY COUNCIL	26
8	UPD	DATING AND SCREENING ASSESSMENT FOR SULPHUR DIOXIDE	27
	8.1	INTRODUCTION	27
:	8.2	STANDARD AND OBJECTIVE FOR SULPHUR DIOXIDE	27
:	8.3	SCREENING ASSESSMENT OF SULPHUR DIOXIDE	27
8	8.4	BACKGROUND CONCENTRATIONS FOR SULPHUR DIOXIDE	27
8	8.5	SCREENING ASSESSMENT OF MONITORING DATA	27
	8.6	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	28
	8.7	SCREENING ASSESSMENT OF DOMESTIC SOURCES	28
8	8.8	SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES	
8	8.9	CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS NORWICH CITY COUNCIL	28
9	UPD	DATING AND SCREENING ASSESSMENT FOR PM ₁₀	29
(9.1	THE NATIONAL PERSPECTIVE	29
•	9.2	STANDARD AND OBJECTIVE FOR PM ₁₀	
•	9.3	SCREENING ASSESSMENT OF PM ₁₀	29
•	9.4	BACKGROUND CONCENTRATIONS FOR PM ₁₀	30
•	9.5	SCREENING ASSESSMENT OF MONITORING DATA	30
•	9.6	SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES	30
	9.7	SCREENING ASSESSMENT OF INDUSTRIAL SOURCES	
	9.8	SCREENING ASSESSMENT OF FUGITIVE AND UNCONTROLLED SOURCES	
	9.9	SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES	
•	9.10	CONCLUSIONS FOR PM10 CONCENTRATIONS NORWICH CITY COUNCIL	33
10) CC	ONCLUSIONS	34
	10.1	CARBON MONOXIDE	34
	10.2	BENZENE	34
•	10.3	1,3-Butadiene	34
	10.4	LEAD	
	10.5	NITROGEN DIOXIDE	34
	10.6	SULPHUR DIOXIDE	
	10.7	PM ₁₀	
	10.8	SUMMARY AND RECOMMENDATIONS	35
11	1 PF	FERENCES	36

12 TF	IE UK AIR QUALITY STRATEGY	37
12.2	AIR QUALITY REVIEWS - THE APPROACHES AND EXPECTED OUTCOMES	39
12.3	LOCATIONS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON	40

APPENDICES

Appendix 1	Monitoring Data
Appendix 2	Traffic Data and DMRB results
Appendix 3	Emissions Data
Appendix 4	Descriptions of selected models and tools
Appendix 5	Report Checklist

1 Introduction to the Updating and Screening Assessment

This section outlines the purpose of this Updating and Screening Assessment and the scope of the assessment.

1.1 PURPOSE OF THE UPDATING AND SCREENING ASSESSMENT

The first round of air quality review and assessments is now complete and all local authorities should have completed all necessary stages. Where the likelihood of exceedences of air quality objectives have been identified in areas of significant public exposure, an air quality management area should have been declared, followed by a further Stage 4 review and assessment, and the formulation of an action plan to eliminate exceedences. Local authorities are now required to proceed to the second round of review and assessment in which sources of emissions to air are reassessed to identify whether the situation has changed since the first round of review and assessment, and if so, what impact this may have on predicted exceedences of the air quality objectives. Such changes might include significant traffic growth on a major road, which had not been foreseen, construction of a new industrial plant with emissions to air, or significant changes in the emissions of an existing plant.

The second round of review and assessment is to be undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 review and assessments previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedence is identified for a pollutant it will be necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead.

1.2 OVERVIEW OF APPROACH TAKEN

The general approach taken to this Updating and Screening Assessment was to:

- § Identify the conclusions of the last round of review and assessment for each of the seven pollutants included in the air quality regulations;
- § Identify significant sources of emissions to air for the seven pollutants included in the air quality regulations, including major roads and industrial plant;
- § Identify new sources not previously considered in the first round of review and assessment;
- § Identify any sources for which emissions have changed significantly since the last round of review and assessment:
- § Identify and interpret the significance of air quality monitoring data made available since the last round of review and assessment;
- § Assess the risk of exceedences of the air quality objectives in locations where relative public exposure may exist using screening models and nomograms; and
- Where necessary, identify locations and pollutants for which further detailed assessment of air quality will be required.

1.3 RELEVANT DEFRA DOCUMENTATION USED

This report takes into account the guidance in LAQM.TG(03)³, published January 2003.

1.4 POLLUTANTS CONSIDERED IN THIS REPORT

All pollutants included in the Air Quality Regulations¹ for the purposes of Review and Assessment have been considered in this report.

1.5 STRUCTURE OF THE REPORT

The report is structured as follows:

- § Chapter 1 summarises the aims of the updating and screening assessment, the approach adopted for the assessment, as well as relevant background information for Norwich City Council, and relevant emissions-to-air sources;
- § Chapter 2 summarises the information used to support this assessment. identifies data used in support of this assessment and highlights significant changes in emissions to air within the City since the first round of review and assessment;
- § Chapters 3-9 present the review and assessment for each of the seven pollutants included in the Air Quality Regulations;
- § Chapter 10 presents conclusions and recommendations for further work, where required, for each of the seven pollutants;
- § Chapter 11 presents the references
- § Chapter 12 details the UK Air Quality Strategy and the function of an updating and screening assessment.

The Objectives of the Air Quality strategy are shown in Table 1.1. Further details of the Air Quality Strategy are given in chapter 13.

Table 1.1 Objectives included in the Air Quality Regulations 2000 and (Amendment) Regulations 2002 for the purpose of Local Air Quality Management

Pollutant	Air Quality Objective Date to be				
	Concentration	Measured as	achieved by		
Benzene					
All authorities	16.25 μg/m³	running annual mean	31.12.2003		
Authorities in England and Wales only	5.00 μg/m³	annual mean	31.12.2010		
Authorities in Scotland and Northern Ireland only ^a	3.25 μg/m ³	running annual mean	31.12.2010		
1,3-Butadiene	2.25 μg/m³	running annual mean	31.12.2003		
Carbon monoxide Authorities in England, Wales and Northern Ireland only ^a	10.0 mg/m ³	maximum daily running 8-hour mean	31.12.2003		
Authorities in Scotland only	10.0 mg/m³	running 8-hour mean	31.12.2003		
Lead	0.5 μg/m³	annual mean	31.12.2004		
	0.25 μ g/m ³	annual mean	31.12.2008		
Nitrogen dioxide ^b	200 µg/m³ not to be exceeded more than 18 times a year	1 hour mean	31.12.2005		
	40 μg/m³	annual mean	31.12.2005		
Particles (PM ₁₀) (gravimetric) ^c All authorities	50 μg/m³ not to be exceeded more than 35 times a year	24 hour mean	31.12.2004		
	40 μg/m³	annual mean	31.12.2004		
Authorities in Scotland only ^d	50 μg/m³ not to be exceeded more than 7 times a year	24 hour mean	31.12.2010		
	18 μg/m³	annual mean	31.12.2010		
Sulphur dioxide	350 µg/m ³ not to be exceeded more than 24 times a year	1 hour mean	31.12.2004		
	125 µg/m³ not to be exceeded more than 3 times a year	24 hour mean	31.12.2004		
	266 μg/m ³ not to be exceeded more than 35 times a year	15 minute mean	31.12.2005		

a. In Northern Ireland none of the objectives are currently in regulation. Air Quality (Northern Ireland) Regulations are scheduled for consultation early in 2003.

b. The objectives for nitrogen dioxide are provisional.

c. Measured using the European gravimetric transfer sampler or equivalent.

d. These 2010 Air Quality Objectives for PM10 apply in Scotland only, as set out in the Air Quality (Scotland) Amendment Regulations 2002.

1.5.1 The difference between 'standards' and 'objectives' in the UK AQS Air quality standards (in the UK AQS) are the concentrations of pollutants in the atmosphere that can broadly be taken to achieve a certain level of environmental quality. The standards are based on assessment of the effects of each pollutant on human health including the effects on sensitive

The *objectives* of the UK air quality policy are framed on the basis of the recommended standards. The objectives are based on the standards, but take into account feasibility, practicality, and the costs and benefits of fully complying with the standards.

subgroups. The standards have been set at levels to avoid significant risks to health.

Specific objectives relate either to achieving the full standard or, where use has been made of a short averaging period, objectives are sometimes expressed in terms of percentile compliance. The use of percentiles means that a limited number of exceedences of the air quality standard over a particular timescale, usually a year, are permitted. This is to account for unusual meteorological conditions or particular events such as November 5th. For example, if an objective is to be complied with at the 99.9th percentile, then 99.9% of measurements at each location must be at or below the level specified.

2 Information used to support this assessment

This section lists the key information used in this review and assessment.

2.1 CONCLUSIONS FROM THE FIRST ROUND OF REVIEW AND ASSESSMENT OF AIR QUALITY FOR NORWICH CITY COUNCIL

Norwich City Council has completed the following review and assessments of air quality to date:

- § Stage 1 & 2. Some traffic and industrial sources identified as potential sources of exceedences.
- § Stage 3. Modelling suggested that The City of Norwich need to declare an Air Quality Management Area (AQMA) for nitrogen dioxide. The extent of the predicted exceedences has been considered based on modelling and traffic growth scenarios. Norwich City Council have considered the likelihood of receptor exposure to exceedences and decided the appropriate locations of AQMAs in the city. Three AQMAs were proposed, Castle, Grapes Hill and St Augustines.
- § AQMA. 3 AQMAs were declared as a result of predicted exceedences at relevant receptors in 3 areas

2.2 PROPOSED DEVELOPMENTS WHICH MAY AFFECT AIR QUALITY

Any new developments in the local authority area, or outside the LA that may impact on local air quality need to be considered. Key considerations should include

- § Industry
- § Housing and redevelopment
- **§** Road Network changes

There are no significant industrial developments planned in Norwich City.

There are no significant housing and redevelopment schemes planned in Norwich City.

There are no significant road transport development schemes planned in Norwich City.

2.3 MAPS AND DISTANCES OF RECEPTORS FROM ROADS

Norwich City Council provided electronic OS LandLine $^{\text{TM}}$ which was used in a Geographical Information System (GIS) for the assessment. Individual buildings or groups of buildings (receptors) were identified from the electronic OS Landline maps of the areas. The distances of these receptors from the road, and the widths of the roads, were accurately determined from the maps.

All maps in this document are reproduced from Ordnance Survey material with permission of Her Majesty's Stationery Office \tilde{a} Crown Copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. Licence number LA 078867.2002.

2.4 ROAD TRAFFIC DATA

This section summarises the information used in this report; more detailed information is given in Appendix 2. Appendix 2 lists the locations of the traffic flow and speed measurement points, flow and speed data and other relevant traffic statistics.

Data were collated from a range of sources, including:

- data provided by Norwich City Council (DETR link based census and High growth traffic scenarios have been used from Tempro 3.1.)
- § data held in the National Atmospheric Emissions Inventory (NAEI, 2000) (where no other data were available from either Norwich City Council or the Highways Agency).

Where no average speed data were available, estimated speeds were used near receptors and junctions. Speeds slower than the national speed limits have been assigned to sections of roads in areas close to junctions and adjustments made to take account of congestion.

2.4.1 Fraction of HGVs

Percentages of Cars, LGVs, HGV and buses were available from Norwich City Council for many roads. For other road links, the percentage of HGVs was calculated from the data held in the 2000 National Atmospheric Emissions Inventory.

2.4.2 Traffic growth

Norwich City Council provided the traffic projections for both 2004 and 2005 (from Norfolk County Council).

2.4.3 Distance from the centre of the road to the kerbside and to the receptors Initially a minimum distance for the receptor to the road was assumed. This therefore tests the road contribution to receptors as a worst case scenario. Where any problems were identified the distances of receptors from the road were then taken from the electronic OS Landline™ of the Council area. This strategy is a conservative approach.

2.5 PART A AND B PROCESSES

There are many Part A and Part B Industrial processes in Norwich City Council. A full list is given in Appendix 3.

2.6 AMBIENT MONITORING

Norwich City Council have undertaken monitoring of the following pollutants in their area:

- § Nitrogen dioxide
- § Sulphur dioxide
- § Carbon monoxide
- § Particles (PM₁₀)

Full details of the type, locations, and concentrations recorded by the monitors (diffusion tubes and continuous monitors) are given in Appendix 1.

2.6.1 Diffusion tubes

Diffusion tube monitoring is carried out at numerous locations in Norwich City Council and analysed by Gradko Laboratories. Some of the NO_2 diffusion tubes are co-located with the continuous monitor.

2.6.2 Continuous monitoring

There is continuous monitoring for NO₂ SO₂ PM₁₀ and CO.

3 Updating and Screening Assessment for Carbon Monoxide

3.1 THE NATIONAL PERSPECTIVE

The main source of carbon monoxide in the United Kingdom is road transport, which accounted for 67% of total releases in 2000. Annual emissions of carbon monoxide have been falling steadily since the 1970s, and are expected to continue to do so. Current projections indicate that road transport emissions will decline by a further 42% between 2000 and 2005. Existing policies will be sufficient to reduce maximum daily 8-hour mean concentrations of carbon monoxide below 10 mgm⁻³ by about 2003.

3.2 STANDARD AND OBJECTIVE FOR CARBON MONOXIDE

The Government and the Devolved Administrations have adopted an 8-hour running mean concentration of 11.6 mgm⁻³ as the air quality standard for carbon monoxide. The new objective has been set at a slightly tighter level of 10 mgm⁻³ as a maximum daily running 8-hour mean concentration to be achieved by the end of 2003, bringing it into line with the second Air Quality Daughter Directive limit value.

3.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR CARBON MONOXIDE

The following conclusions were given for carbon monoxide in the earlier stages of Review and Assessment for Norwich City Council

§ Stage 3 Assessment of any sources for CO was not required.

3.4 SCREENING ASSESSMENT OF CARBON MONOXIDE

The Technical Guidance LAQM TG (03) requires assessment of carbon monoxide to consider the following sources, data or locations:

- § Monitoring Data
- § Very Busy Roads

These are described in the following sections.

3.5 BACKGROUND CONCENTRATIONS FOR CARBON MONOXIDE

The average background annual mean carbon monoxide concentration estimated from the UK background maps (http://www.airquality.co.uk/archive/laqm/tools.php) was 0.4 mgm⁻³in 2001 with maximum concentration of 0.5 mgm⁻³ in 2001.

3.6 SCREENING ASSESSMENT OF MONITORING DATA

Monitoring for carbon monoxide is available from the Norwich City Area (Appendix 1).

The maximum running 8-hour mean monitored at Norwich airport in 2002 was 1.3 mg m³ which was within the 10mg m³ objective.

The maximum running 8-hour mean monitored at Norwich centre in 2002 was 2.5 mg m³ which was within the 10mg m³ objective.

The maximum running 8-hour mean monitored at Norwich Golding Place in 2002 was 4.6 mg m³ which was within the 10mg m³ objective.

3.7 SCREENING ASSESSMENT OF VERY BUSY ROADS/JUNCTIONS

The guidance document LAQM TG (03) requires assessment of CO only at 'very busy roads' and junctions (Appendix 2). Traffic flow data were supplied by Norwich City Council and from the NAEI. Based on these data, there are no roads in Norwich City Council that can be classified as 'very busy' according to the criteria in the guidance (see Box 2.2) i.e. >80,000.

3.8 CONCLUSIONS FOR CARBON MONOXIDE CONCENTRATIONS IN NORWICH CITY DISTICT COUNCIL AREA

There are no roads in Norwich City Council that can be classified as 'very busy' according to the criteria in the guidance. Monitoring data suggest an exceedence of the objective is unlikely. A detailed assessment is not required for carbon monoxide in Norwich City Council.

4 Updating and Screening Assessment for Benzene

4.1 THE NATIONAL PERSPECTIVE

The main sources of benzene emissions in the UK are petrol-engined vehicles, petrol refining, and the distribution and uncontrolled emissions from petrol station forecourts without vapour recovery systems. A number of policy measures already in place, or planned for future years, will continue to reduce emissions of benzene. Since January 2000, EU legislation has reduced the maximum benzene content of petrol to 1%, from a previous upper limit of 5%. The European Auto-Oil programme will further reduce emissions for cars and light-duty vehicles, and emissions of benzene from the storage and distribution of petrol are controlled by vapour recovery systems. Forecasts based on national mapping suggest that the policy measures currently in place will achieve the 2003 objective at all urban background and roadside/kerbside locations. Whilst the 2010 objectives are expected to be met at all urban background, and most roadside locations, there is the possibility for some remaining exceedences which will require additional measures at a local level.

4.2 STANDARD AND OBJECTIVE FOR BENZENE

The Government and the Devolved Administrations have adopted a running annual mean concentration of $16.25~\mu gm^{-3}$ as the air quality standard for benzene, with an objective for the standard to be achieved by the end of 2003. However, in light of the health advice from EPAQS and the Department of Health's Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment (COC) to reduce concentrations of benzene in air to as low a level as possible, additional tighter objectives have also been set. The additional objective is for an annual mean of $5~\mu gm^{-3}$ to be achieved by the end of 2010 in England and Wales. In Scotland and Northern Ireland, a running annual mean of $3.25~\mu gm^{-3}$ has been adopted as an additional objective, to be achieved by the end of 2010.

4.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR BENZENE

The following conclusions were given for benzene in the earlier stages of Review and Assessment for Norwich City Council.

Stage 3 Assessment of any sources for Benzene was not required.

Emissions from vehicles are expected to decrease over the relevant period and national policies are expected to ensure that there will be no exceedences due to petrol stations by 2003; Current levels of benzene are estimated to be already below the objective of 16.25 μ gm⁻³ in Norwich City Council. National policy measures are expected to deliver the national air quality objective for benzene by the end of 2003.

4.4 SCREENING ASSESSMENT OF BENZENE

The Technical Guidance LAQM TG (03) requires assessment of benzene to consider the following sources, data or locations:

- § Monitoring Data
- § Very Busy Roads or Junctions in Built-up Areas
- § Industrial Sources
- § Petrol Stations
- § Major Fuel Storage Depots (Petroleum only)

These are described in the following sections.

4.5 BACKGROUND CONCENTRATIONS FOR BENZENE

The average annual mean background benzene concentration estimated from the UK background maps (http://www.airquality.co.uk/archive/laqm/tools.php) was 0.7 μ gm⁻³ in 2001 with maximum concentration of 0.9 μ gm⁻³ in 2001. 2003 concentrations are 0.6 μ gm⁻³ average and 0.8 μ gm⁻³ maximum and in 2010 an average of 0.5 μ gm⁻³ and maximum of 0.6 μ gm⁻³.

4.6 SCREENING ASSESSMENT OF MONITORING DATA

There is no monitoring of benzene within or near to the Norwich City Council area.

4.7 SCREENING ASSESSMENT OF VERY BUSY ROADS/JUNCTIONS

The guidance document LAQM TG (03) requires assessment of benzene only at 'very busy roads' and junctions (Appendix 2). Traffic flow data were supplied by Norwich City Council and from the NAEI. Based on these data, there are no roads in Norwich City Council, which can be classified as 'very busy' according to the criteria in the guidance (Box 3.2).

4.8 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of benzene:

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets)
Petroleum processes (73)

Petrochemical processes (2)

Carbonisation processes (12)

Cement/lime manufacture (7)

Gasification processes (5)

Part B

Processes for the storage and unloading of petrol at terminals

The part B processes have been checked against Table in A2.182 of the Technical guidance and none of the processes in the authorisation list have the potential to emit significant quantities of benzene. None of the Part A or Part B industrial processes in Norwich City Council area (Appendix 3) operate these processes or have the potential to emit benzene.

4.9 SCREENING ASSESSMENT OF PETROL STATIONS

There are petrol stations in Norwich City Council authorised as Part B processes (Appendix 3). The guidance requires petrol stations to be considered only if they are near a busy road, i.e with more than 30,000 vehicles per day and have a throughput greater than 2 million litres. There are no petrol stations that meet those criteria. There are no buildings other than those of the petrol station with 10m of the pumps and there are no places where members of the public might regularly be exposed within 10m of the pumps. A detailed assessment for benzene is not required based on petrol station emissions.

4.10 SCREENING ASSESSMENT OF FUEL STORAGE DEPOTS

There are no major fuel storage depots in Norwich City Council.

4.11 CONCLUSIONS FOR BENZENE CONCENTRATIONS NORWICH CITY COUNCIL

There are no roads in Norwich City Council that can be classified as 'very busy' according to the criteria in the guidance. There are no petrol stations with a throughput greater than 2 million litres and with relevant exposure within 10m of the pumps.

A detailed assessment is, therefore, not required based for benzene in Norwich City Council.

5 Updating and Screening Assessment for 1,3-Butadiene

5.1 THE NATIONAL PERSPECTIVE

The main source of 1,3-butadiene in the United Kingdom is emissions from motor vehicle exhausts. 1,3-butadiene is also an important industrial chemical and is handled in bulk at a small number of industrial premises. Maximum running annual mean concentrations of 1,3-butadiene measured at all urban background/centre and roadside locations in the national network are already well below the 2003 objective of 2.25 µgm⁻³. The increasing numbers of vehicles equipped with three way catalysts will significantly reduce emissions of 1,3-butadiene in future years. Recently agreed further reductions in vehicle emissions and improvements to fuel quality are expected to further reduce emissions of 1,3-butadiene from vehicle exhausts. These measures are expected to deliver the air quality objective by the end of 2003.

5.2 STANDARD AND OBJECTIVE FOR 1,3-BUTADIENE

The Government and the Devolved Administrations have adopted a maximum running annual mean concentration of $2.25~\mu gm^{-3}$ as an air quality standard for 1,3-butadiene. The objective is for the standard to be achieved by the end of 2003.

5.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR 1,3-BUTADIENE

The following conclusions were given for 1,3-butadiene in the earlier stages of Review and Assessment for Norwich City Council

§ Stage 3 Assessment of any sources for 1,3-Butadiene was not required.

Emissions from vehicles are expected to decrease over the relevant period. National policy measures are expected to deliver the national air quality objective for 1,3-butadiene by the end of 2003.

5.4 SCREENING ASSESSMENT OF 1,3-BUTADIENE

The Technical Guidance LAQM.TG(03) requires assessment of 1,3-butadiene to consider the following sources, data or locations:

- § Monitoring Data
- § New Industrial Sources
- § Existing Industrial Sources with Significantly Increased Emissions

These are described in the following sections.

5.5 BACKGROUND CONCENTRATIONS FOR 1,3-BUTADIENE

The average background 1,3-butadiene concentration estimated from the UK background maps (http://www.airquality.co.uk/archive/laqm/tools.php) 0.3μgm⁻³ in 2001 with maximum concentration of 0.3μgm⁻³ in 2001. In 2003 the average was 0.2μgm⁻³ and the maximum 0.3μgm⁻³.

5.6 SCREENING ASSESSMENT OF MONITORING DATA

No monitoring of 1,3-butadiene has been undertaken by Norwich City Council.

5.7 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of 1,3-butadiene:

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets)
Petroleum processes (2)
Petrochemical processes (95)
Organic chemical manufacture (3)

Part B

Rubber processes

The part B processes have been checked against Table in A2.182 of the Technical guidance and none of the processes in the authorisation list have the potential to emit significant quantities of 1,3-butadiene. None of the Part A or Part B industrial processes in Norwich City Council (Appendix 3) operate these processes or have the potential to emit 1,3-butadiene.

There are no industrial processes, current or proposed, in neighbouring areas that have the potential to emit 1,3-butadiene.

5.8 CONCLUSIONS FOR 1,3-BUTADIENE CONCENTRATIONS IN NORWICH CITY COUNCIL AREA

Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003. There are no industrial processes, current or proposed, in Norwich City Council which have the potential to emit 1,3-butadiene. A detailed assessment is not required for 1,3-butadiene in Norwich City Council.

6 Updating and Screening Assessment for Lead

6.1 THE NATIONAL PERSPECTIVE

The agreement reached between the European Parliament and the Environment Council on the Directive on the Quality of Petrol and Diesel Fuels (part of the Auto-Oil Programme) has led to the ban on sales of leaded petrol in the United Kingdom with effect from 1 January 2000. Emissions of lead are now restricted to a variety of industrial activities, such as battery manufacture, pigments in paints and glazes, alloys, radiation shielding, tank lining and piping.

Detailed assessments of the potential impact of lead emissions from industrial processes have been undertaken by the Government and the Devolved Administrations, based upon both monitoring and sector analysis studies. The former has included a 12-month monitoring survey in the vicinity of 30 key industrial sites in the UK, which has been used to supplement information already provided from the non-automatic monitoring networks. These monitoring data have generally indicated no exceedences of the 2004 or 2008 objectives, although locations in proximity to non-ferrous metal production and foundry processes were deemed to be at risk.

6.2 STANDARD AND OBJECTIVE FOR LEAD

The Government and the Devolved Administrations have adopted an annual mean concentration of $0.5~\mu gm^{-3}$ as the air quality standard for lead, with an objective for the standard to be achieved by the end of 2004. In addition, a lower air quality objective of $0.25~\mu gm^{-3}$ to be achieved by the end of 2008 has also been set.

6.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR LEAD

The following conclusions were given for lead in the earlier Stages of Review and Assessment Norwich City Council.

- § Stage 1 Review and assessment found one potential source of exceedence, Anglia Lead. However this was screened out at Stage 2.
- Stage 3 Assessment of any sources for lead was not required.

6.4 SCREENING ASSESSMENT OF LEAD

The Technical Guidance LAQM TG (03) requires assessment of lead to consider the following sources, data or locations:

- § Monitoring Data outside an AQMA
- § New Industrial Sources
- § Existing Industrial Sources with Significantly Increased Emissions

These are described in the following sections.

6.5 SCREENING ASSESSMENT OF MONITORING DATA

No monitoring of lead has been undertaken by Norwich City Council.

6.6 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of lead:

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets) Iron and steel (37)

Non-ferrous metals (23) Manufacture of organic chemicals (35)

Part B
Non-ferrous metal furnaces
Electrical furnaces
Blast cupolas
Aluminium processes
Zinc Processes
Copper processes
Lead glass manufacture

The part B processes have been checked against Table in A2.182 of the Technical guidance and there are no processes in the authorisation list that have not already been assessed and have the potential to emit significant quantities of lead.

No newly identified Part A or Part B industrial processes in Norwich City Council (Appendix 3) operate these processes or have the potential to emit lead.

There are no industrial processes, current or proposed, in neighbouring areas that have the potential to emit lead.

6.7 CONCLUSIONS FOR LEAD CONCENTRATIONS IN NORWICH CITY COUNCIL

Emissions of lead from industrial processes in Norwich City Council are not likely to exceed the objectives for lead to be achieved in 2004 and 2008. A detailed assessment is not required for lead in Norwich City Council.

7 Updating and Screening Assessment for Nitrogen Dioxide

7.1 INTRODUCTION

The principal source of NOx emissions is road transport, which accounted for about 49% of total UK emissions in 2000. Major roads carrying large volumes of high-speed traffic (such as motorways and other primary routes) are a predominant source, as are conurbations and city centres with congested traffic. Within most urban areas, the contribution of road transport to local emissions will be much greater than for the national picture.

Meeting the annual mean objective in 2005, and the limit value in 2010, is expected to be considerably more demanding than achieving the 1-hour objective. National studies have indicated that the annual mean objective is likely to be achieved at all urban background locations outside of London by 2005, but that the objective may be exceeded more widely at roadside sites throughout the UK in close proximity to busy road links. Projections for 2010 indicate that the EU limit value may still be exceeded at urban background sites in London, and at roadside locations in other cities.

7.2 STANDARDS AND OBJECTIVES FOR NITROGEN DIOXIDE

The Government and the Devolved Administrations have adopted two Air Quality Objectives for nitrogen dioxide, as an annual mean concentration of 40 μgm^{-3} , and a 1-hour mean concentration of 200 μgm^{-3} not to be exceeded more than 18 times per year. The objectives are to be achieved by the end of 2005.

7.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR NITROGEN DIOXIDE

The following conclusions were given for nitrogen oxides in the earlier stages of Review and Assessment report for Norwich City Council:

- § Stage 3 Assessment of any NO₂ identified potential exceedences of the objectives at 3 separate locations.
- § Three AQMAs were declared
- § A stage 4 Review and Assessment has recently been completed.

The locations of the AQMAs are shown on Figure 7.1.

7.4 SCREENING ASSESSMENT OF NITROGEN DIOXIDE

The Technical Guidance LAQM TG (03) requires assessment of nitrogen dioxide to consider the following sources, data or locations:

- § Monitoring data outside an AQMA
- § Monitoring data within an AQMA
- § Narrow congested streets with residential properties close to the kerb
- & lunctions
- § Busy streets where people may spend 1-hour or more close to traffic
- § Roads with high flow of buses and/or HGVs
- § New roads constructed or proposed since first round of review and assessment
- § Roads close to the objective during the first round of review and assessment
- § Roads with significantly changed traffic flows

- § Bus Stations
- § New industrial sources
- § Industrial sources with substantially increased emissions
- § Aircraft

These are evaluated in the following sections.

7.5 BACKGROUND CONCENTRATIONS FOR NITROGEN DIOXIDE

The average annual mean background nitrogen dioxide concentration estimated from the UK background maps (http://www.airquality.co.uk/archive/laqm/tools.php) was 27.7 μ gm⁻³ in 2001 with a maximum concentration of 30.9 for 2005 the estimated annual average was 24.8 μ gm⁻³ with a maximum of 27.8 for 2010 the estimated average is 21.4 μ gm⁻³ with a maximum of 23.9 μ gm⁻³.

7.6 SCREENING ASSESSMENT OF MONITORING DATA

7.6.1 Automatic Monitoring

Nitrogen dioxide concentrations were monitored at a background continuous monitoring site at Norwich Centre (Friars Quay) and at roadside sites at Norwich Roadside, Ber Street and at Goldings Place. The Norwich Centre and Norwich Roadside sites are part of defra's Automatic Urban and Rural Network and have operated from 1997 onwards.

The Norwich Centre monitoring station (TG230089) is within a self-contained, air-conditioned housing located within the south western corner of a central Norwich public

garden. The nearest road is located approximately 12 metres away at St George's Street although traffic flow is free flowing and very light (1 or 2 vehicles per minute observed off peak). The manifold inlet is approximately 3 metres high. The surrounding area is generally open and comprises of residential and light industrial premises.

The Norwich Roadside site (TG234078) is within an existing office building complex approximately 6 metres from a busy 2-lane urban street (Ber Street). Traffic flow is approximately 16,000 vehicles per day and is subject to frequent congestion. The manifold inlet is approximately 6 metres above ground and is mounted close to the building facade. The surrounding area comprises retail outlet and business premises.

The Golding Place continuous monitor is located in a residential street approximately 25 m from the kerb of the A147 Grapes Hill.

The Norwich Centre and Norwich Roadside continuous monitoring stations are included in defra's Automatic Urban and Rural Network. The data are checked and ratified by netcen.

The Golding Place site is operated by Norwich City Council. The equipment is calibrated and the data are checked and ratified by netcen to the same standard as the Automatic Urban and Rural Network.

Table 7.1 summarises the measurements of nitrogen dioxide concentrations at the Norwich Centre, Norwich Roadside and Norwich Golding Place continuous monitoring stations for relevant periods. Data for Cambridge Roadside is included for comparison.

Table 7.1. Monitored Nitrogen Dioxide Concentrations

Site	Period	Data capture, %	NO _{x,} concentration mg m ⁻³ as NO ₂	NO ₂ Co	ncentration, g m ⁻³
				Period average	Period 99.8 th percentile hourly mean
Norwich Centre	2002	94.9	39.1	25.3	88
	12/4/02-28/2/03 ^{&}	95.2		25.8	99
	12/4/02-4/10/02	93.8		18.7	69
	3/9/02-10/6/03 ^{&}	92.5		30.3	103
Norwich Roadside	2002	97.7	61.5	30.3	96
	12/4/02-28/2/03 ^{&}	96.4		30.8	100
	12/4/02-4/10/02	96.8		26.9	93
	3/9/02-10/6/03&	94.7		35.3	107
Norwich Golding Place	3/9/02-10/6/03 ^{&}	94.2	71.6	38.1	122
Cambridge Roadside	2002	94.0		42.7	104
Roduside	12/4/02-28/2/03&	94.8		43.1	103
	12/4/02-4/10/02	93.4		40.6	105
	3/9/02-10/6/03&	95.3		44.0	103

[&] Ratified to 31/12/02

7.6.2 Estimation of annual mean nitrogen dioxide concentrations from short-term monitoring data

It was only possible to carry out a diffusion tube monitoring survey at sites within the AQMA between April and October 2002. Data from other diffusion tube sites was available from April 2002 to February 2003. The Norwich Golding Place site started in September 2002. The measurements

at these sites were adjusted to provide estimates of annual mean concentrations during 2002 by reference to measurements made over the same periods at the Norwich Centre, Norwich Roadside and Cambridge Roadside sites. Table 7.2 provides details of measurements used to derive the adjustment factor.

Table 7.2 Adjustment factors used to estimate annual mean concentrations from part

Period	Long term site	Annual mean 2002	Period mean	Ratio
12/4/02-28/2/03	Norwich Centre	25.3	25.8	0.981
	Norwich Roadside	30.3	30.8	0.984
	Cambridge Roadside	42.7	43.1	0.991
	Average			0.985
12/4/02-4/10/02	Norwich Centre	25.3	18.7	1.353
	Norwich Roadside	30.3	26.9	1.126
	Cambridge Roadside	42.7	40.6	1.052
	Average			1.177
3/9/02-10/6/03	Norwich Centre	25.3	30.3	0.835
	Norwich Roadside	30.3	35.3	0.858
	Cambridge Roadside	42.7	44.0	0.970
	Average			0.888

7.6.3 Diffusion tube monitoring

7.6.3.1 Method of adjustment of bias in the reported diffusion tube concentrations

In this report, we have assessed the bias in diffusion tube data using the concentrations recorded using diffusion tubes collocated with the Norwich Centre continuous monitoring site on Ber Street. Table 7.3 shows the concentrations measured by continuous monitor and by diffusion tube at the site for relevant periods. Bias adjustment factors have been calculated for each period following AQM TG (03) guidance. Part year adjustment factors, calculated in Table 7.2 above have then been applied to derive an overall adjustment factor to convert part year diffusion tube measurements to 2002 annual mean concentrations.

Table 7.3 Assessment of bias in nitrogen dioxide diffusion tube measurements

Diffusion tube period	Continuous monitor concentration, μg m ⁻³	Diffusion tube concentration μg m ⁻³	Bias adjustment factor for period	Bias adjustment factor to 2002
12/4/02- 28/2/03	25.8	25.0	1.032	1.016
12/4/02- 4/10/02	18.7	20.8	0.899	1.058

7.6.3.2 Factors used to predict future diffusion tube concentrations from current concentrations

The DEFRA Review and Assessment: Technical Guidance. LAQM.TG (03) provides factors to project forward concentrations at background locations, based on the concentrations measured in recent years.

Background

§ 2002 to 2005 0.93

Kerbside

§ 2002 to 2005 0.92

The projected concentrations at each of the diffusion tube sites are shown in Table 7.4. Figs 7.2 – 7.4 show the estimated concentrations in 2005 based on the diffusion tube measurements.

7.6.4 Comparison of the monitoring results with the relevant air quality objectives

The annual average nitrogen dioxide concentrations measured at the background continuous monitoring sites at Norwich Centre, Norwich Roadside and Golding Place were all markedly less than the 2005 objective of 40 $\mu g\ m^{\text{-}3}$ as an annual mean. The concentrations are expected to decrease from the current values in the period to 2005 and so it is concluded that the objective will be met at these sites.

The Golding Place continuous monitor is located close to the Grapes Hill AQMA and the exposure is likely to be representative of public exposure in the area. The forecast concentration in 2005 derived from the continuous monitoring results is $34x0.92=31~\mu g~m^{-3}$. It seems unlikely based on the continuous monitoring results that members of the public will be exposed to concentrations exceeding the objective of 40 $\mu g~m^{-3}$ in the vicinity of the Goldings Place continuous monitor close to Grapes Hill AQMA in 2005.

Nitrogen dioxide concentrations are not expected to exceed the objective at diffusion tube locations within the Castle AQMA. However, it is not clear whether the diffusion tube sites correspond to worst case public exposure.

It is estimated that the objective will be exceeded at one of the diffusion tube sites , midway along St Augustines Street in the St Augustines AQMA. It is likely that members of the public will be exposed to similar concentrations of nitrogen dioxide over the annual mean averaging time of the objective.

Table 7.4 Diffusion tube measurements

Site	OS Grid re	eference, m		Concentration, μg m ⁻³			
	X	Υ	Period	2002, bias adjusted	2005 estimate		
Vulcan Rd	622226	311746	36.9	37.4	34.4		
Heartsease	625231	310098	30.2	30.6	28.2		
Tombland	623335	308853	34.8	35.4	32.5		
Cattlemarket	623290	308394	36.8	37.4	34.4		
St Stephens	622847	308025	34.2	34.8	32.0		
lpswich Rd	622546	307504	28.6	29.1	26.8		
Earlham Rd	619120	308259	30.5	31.0	28.5		
Colman Rd	621084	308519	34.8	35.3 32.5			
Unthank Rd	622003	308112	34.7	35.3	32.5		
Johnstone PI	622460	308444	38.6	39.2	36.1		
Chapelfield	622596	308238	23.4	23.8	21.9		
Castlemeadow	623155	308604	34.7	35.3	32.4		
Guildhall	622931	308560	23.1	23.4	21.6		
Exchange St	623000	308714	31.3	31.8	29.3		
St Georges	623085	308895	23.7	24.1	22.2		
St Augustines	622818	309582	43.6	44.3	40.7		
Ber St 1	623451	307811	25.0	25.4	23.3		
Parmeter PI	623467	3008418	20.4	21.6	19.9		
Rouen Rd	623302	308310	26.4	27.9	25.7		
Paragon Pl	622381	308648	25.5	27.0	24.8		
Upper St Giles	622457	308571	23.4	24.7	22.7		
Copeman St	622451	308701	22.5	23.8	21.9		
Opie St	623182	308633	23.0	24.3	22.4		
Cassella	622392	308844	22.9	24.2	22.3		
Golding PI	622392	308761	23.4	24.7 22.7			
St Augustines - Colmans	622915	309485	27.4 29.0 26.7		26.7		
St Augustines - top	622795	309626	34.1	36.1	33.2		
Bull Close			22.7 24.1 22.1				
Spencer St			20.8	22.1	20.3		

Fig7.2 St Augustines Street – location of diffusion tubes and 2005 projections mg m⁻³

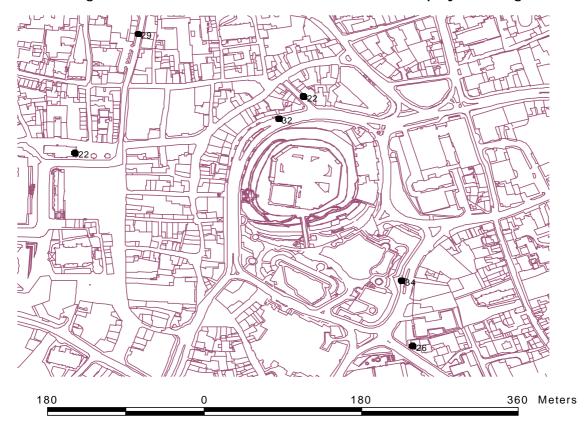



Fig.7.3 Castle - location of diffusion tubes and 2005 projections mg m⁻³

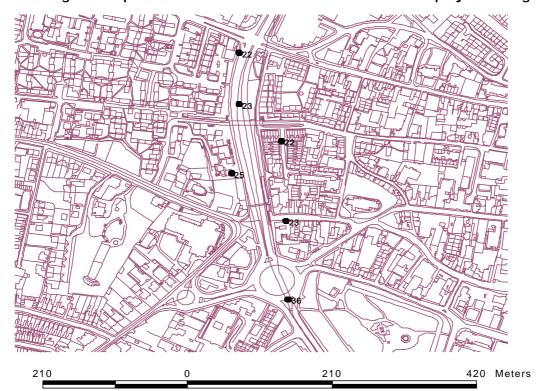


Fig 7.4 Grapes Hill - location of diffusion tubes and 2005 projections mg m⁻³

7.6.5 Comparison of the monitoring results with the relevant air quality objectives

The annual average nitrogen dioxide concentrations measured at the background continuous monitoring sites at Norwich Centre, Norwich Roadside and Golding Place were all markedly less than the 2005 objective of 40 μ g m⁻³ as an annual mean. The concentrations are expected to decrease from the current values in the period to 2005 and so it is concluded that the objective will be met at these sites.

Nitrogen dioxide concentrations are not expected to exceed the objective at diffusion tube locations within the Castle AQMA. However, it is not clear whether the diffusion tube sites correspond to worst case public exposure.

It is estimated that the objective will be exceeded at one of the diffusion tube sites, midway along St Augustines Street in the St Augustines AQMA. It is likely that members of the public will be exposed to similar concentrations of nitrogen dioxide over the annual mean averaging time of the objective.

7.7 SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES

Traffic flow data were taken from the NAEI 2000 roads database and from manual and automatic traffic count data supplied by Norwich City Council and Norfolk County Council (Appendix 2 and Stage 3 report). For screening purposes, appropriate receptor distances based on the closest property where public exposure was likely and appropriate speeds for the road were used. Norwich City Council supplied traffic growth figures for 2004 and 2005.

Table 7.5 shows predicted nitrogen dioxide concentrations in 2005 calculated using DMRB for roads in Norwich City Council.

7.7.1 Street Canyons

The DMRB model may significantly under-predict concentrations of Nitrogen dioxide alongside urban city-centre roads classified as 'street canyons'. In this context a street canyon may be described as a relatively narrow street with buildings on wither sides, where the height of the buildings is generally greater than the width of the road. To avoid missing potential exceedences of the objective in such locations the predicted annual mean NO2 'road traffic component' concentration, in the 'local output' sheet of DMRB, by a factor of 2, to take account of the model underprediction. This is then added to the background to give total concentration (as advised in TG (04)). There is one street canyon in Norwich City Council St. Augustines.

Table 7.5 Predicted nitrogen dioxide concentrations in 2005 calculated using DMRB for roads in Norwich City Council

Receptor ID	Link	Distance from link centre to receptor (m)	Annual average speed (km/h)		AADT (combined, veh/day)	Total % HDV	NO2 (μg/m3)
39	A140 Colman Rd	9.3		20	23772	6.3	37.6
40	A11 Newmarket Rd	2		20	19562	1.8	33.8
41	A1056 Ipswich Rd	2		20	15575	1.8	33.3
42	A147 Grapes Hill	2		20	39822	2.2	36.1
43	A11 St Stephens Rd	2		20	27684	2.1	35.0
44	A147 St Crispins Rd	2		20	33261	1.8	35.1
45	A147 Barn Rd	25		20	40214	1.7	32.4
46	A147 Barrack St	2		20	27315	1.9	34.7
47	A1067 Pitt Street	2		20	19691	1.6	33.7
48	A140 Boundary Rd	20		20	27356	7.5	36.6
49	St Augustines (street Canyon)	4.3		25	23088	3.9	43.2
50	Castle Meadow	2		25	10433	6.0	34.0
51	Dereham rd/Norwich rd	10		25	38283	6.0	38.0
52	Farmers avenue	10		20	12792	6.0	34.8
53	Cattle Market	10		20	28704	6.0	37.8
54	Red Lion	4.5		20	13104	6.0	35.6
60	St Stephens	13		15	15000	5.0	35.3

^{*} Assumed conservative traffic flow as no traffic counts available.

Note: a distance to road centre of 2 m was modelled as a worst case scenario. For this reason a low speed of 20km/h was also used as a default. Where this caused a problem the actual measured distance to nearest receptor and speed was used.

The DMRB screening model indicates that the 2005 annual mean objective for NO_2 is likely to be exceeded at one roadside receptors in Norwich City Council, St Augustines Street Canyon which is within the existing AQMA. Diffusion tube data for St Augustines also shows an exceedance predicted for 2005.

7.7.2 Busy Junctions

Annual average NO₂ concentrations near busy road junctions in Norwich City Council have been estimated for 2005 using DMRB (Table 7.6).

Table 7.6 Estimated nitrogen dioxide concentrations near busy junctions in Norwich

City Council

		orty oddinon				
Receptor	Link	Distance from link	Annual	AADT	Total %	NO2
ID		centre to receptor (m)	average	(combine	HDV	(μg/m3)
			speed	d,		
			(km/h)	veh/day)		
55	A140 Colman Rd / Newmarket road	15	46	23772	6	
55	;	32	46	19562	6	37.6
56	Red Lion / Farmers Avenue	17	46	11768.5	6	
56	5	6	46	12792	6	37.2
57	A140 Colman Rd / Unthank Rd	12	46	23772	6.3	
57	•	10	46	5000	6.3	38.8
58	A147 Barn Rd / Dereham Rd	10	46	40215	1.7	
58	}	13	46	5000	5	36.2
59	A147 Barn Rd / Chapel Rd Roundabout	25	46	40215	1.7	
59		25	46	5000	5	34.0
61	A147 King Street / Rouen Road	10	46	33312	5	
61		10	46	7152	3	39.1

^{*} Assumed conservative traffic flow as no traffic counts available

Note: a distance to road centre of 2 m was modelled as a worst case scenario. For this reason a low speed of 20km/h was also used as a default. Where this caused a problem the actual measured distance to nearest receptor was used.

The DMRB screening model indicates that the 2005 annual mean objective for NO2 is likely to be met at receptors near the identified busy road junctions in the Norwich area.

7.8 FURTHER ASSESSMENT OF ROAD TRAFFIC SOURCES

There have been no roads identified, either as locations where people may spend an hour or more close to traffic or with a high flow of buses and/or HGVs that have not already been assessed. There are no new or proposed roads since the first round of review and assessment. All roads considered by Norwich City Council to have the potential to cause an exceedance of the objectives, including those close to the objective in the last round have been assessed.

As the stage 4 has very recently been completed and therefore areas identified in the stage 3 assessment that were predicted to exceed the objectives 3 have already been modelled at a detailed level.

§ As St Augustines (street canyon) has already been assessed in the stage 4 report and an AQMA declared, (as for Grapes hill and the castle area), there is no need to take these forward to a detailed assessment.

7.9 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of nitrogen dioxide:

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets) Iron and steel (19)
Petroleum processes (16)
Combustion processes (34)

Cement/lime manufacture (9) Carbonisation (6)

Gasification (4)

Inorganic chemicals (4)

Part B

Glass manufacture

The part B processes have been checked against Table in A2.182 of the Technical guidance and none of the processes in the authorisation list have the potential to emit significant quantities of NO_2 .

7.10 SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES

7.10.1 Bus Stations

The main bus station movements in Norwich City are summarised below. The station has less movements per day than the flow of 1000 given in the Guidance as the level requiring further investigation and the nearest residential receptor is approximately 150m. Therefore this is not considered to be a significant source and is not considered further.

Movements from Norwich City Bus Station

First Bus Company	22 movements per hour 07:00 to 19:00
City Link	Average 4 per day
Chenery	6 movements per day
Sanders	6 movements per day
Airport buses	2 per hour 05:30 to 23:00 hrs
Total	315 per day

Bus Station Surrey Street Norwich grid ref E 622994.23 N 308013.11

7.10.2 Airports

There is an airport in to the north of Norwich,

It lifts 144000 tonnes of freight a year and has 366796 terminal passengers a year. Both these figures lie below the screening figures stated in the guidance, (5 million passengers per year and/or 500,000 tonnes of freight). Therefore this source does not need to be considered in a further assessment.

7.11 CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN NORWICH CITY COUNCIL

Predicted concentrations of nitrogen dioxide indicate that the annual average objective is likely to be exceeded in 2005 at relevant receptors within the existing AQMAs. A stage 4 review and assessment has recently been completed and no significantly new data has come to light since then. A detailed assessment of these areas is not required. There are no significant industrial sources of nitrogen dioxide in Norwich City Council.

8 Updating and Screening Assessment for Sulphur Dioxide

8.1 INTRODUCTION

The main source of sulphur dioxide in the United Kingdom is power stations, which accounted for more than 71% of emissions in 2000. There are also significant emissions from other industrial combustion sources. Domestic sources now only account for 4% of emissions, but can be locally much more significant. Road transport currently accounts for less than 1% of emissions.

Local exceedences of the objectives (principally the 15-minute mean objective) may occur in the vicinity of small combustion plant (less than 20 MW) which burn coal or oil, in areas where solid fuels are the predominant form of domestic heating, and in the vicinity of major ports.

8.2 STANDARD AND OBJECTIVE FOR SULPHUR DIOXIDE

The Government and the Devolved Administrations have adopted a 15-minute mean of 266 µgm⁻³ as an air quality standard for sulphur dioxide, with an objective for the standard not to be exceeded more than 35 times in a year by the end of 2005.

Additional objectives have also been set which are equivalent to the EU limit values specified in the First Air Quality Daughter Directive. These are for a 1-hour mean objective of 350 μgm^{-3} , to be exceeded no more than 24 times per year, and a 24-hour objective of 125 μgm^{-3} , to be exceeded no more than 3 times per year, to be achieved by the end of 2004.

8.3 SCREENING ASSESSMENT OF SULPHUR DIOXIDE

The Technical Guidance LAQM TG (03) requires assessment of sulphur dioxide to consider the following sources, data or locations:

- § Monitoring data within an AQMA
- § Monitoring data outside an AQMA
- § New industrial sources
- § Industrial sources with substantially increased emissions
- § Areas of domestic coal burning
- § Small boilers (>5MW (thermal)) burning coal or oil
- § Shipping
- § Railway Locomotives

These are evaluated in the following sections.

8.4 BACKGROUND CONCENTRATIONS FOR SULPHUR DIOXIDE

The estimated average background sulphur dioxide concentration taken from the UK background maps (http://www.airquality.co.uk/archive/laqm/tools.php) for 2001 was $2.8\mu gm^{-3}$, the maximum concentration was $6.6~\mu gm^{-3}$.

8.5 SCREENING ASSESSMENT OF MONITORING DATA

There is monitoring data for sulphur dioxide in the Norwich City Council region at the Norwich centre monitoring site. In 2002 summary statistics for this site showed a maximum 15 minute mean of 96 μ g m⁻³, a maximum hourly mean of 61 μ g m⁻³ and a 24 hour mean of 24 μ g m⁻³, none of which exceed the objectives, data capture was 96.8 % (details in appendix 1).

8.6 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of sulphur dioxide:

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets) Iron and steel (9)

Petroleum processes (15)

Combustion processes (45)

Cement/lime manufacture (3)

Carbonisation (10)

Non-ferrous metals (7)

Ceramic Production (9)

Part B

Combustion plant 20-50 mwth Furnaces 20-50 mwth Copper processes Refractory goods Glass manufacture Roadstone coating

The part B processes have been checked against Table in A2.182 of the Technical guidance and none of the processes in the authorisation list have the potential to emit significant quantities of SO_2 .

8.6.1 Small Boilers

No small boiler processes were identified by Norwich City Council greater than 5MW with receptors within 500m, and therefore none were identified as needing assessment.

8.7 SCREENING ASSESSMENT OF DOMESTIC SOURCES

8.7.1 Domestic coal burning

There are no data for domestic coal burning available but solid fuel use continues to decline throughout the area. Norwich City Council advises that it is unlikely that there are any areas with 50 houses using these fuels in a 500m x 500m square.

8.8 SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES

8.8.1 Railways

According to information supplied there are no areas where railway engines are run for more than 15 minutes continuously and where members of the public might be exposed. The mainline at Norwich station is electrified.

8.9 CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS NORWICH CITY COUNCIL

There are no significant industrial or domestic sources of sulphur dioxide in Norwich City Council that are expected to exceed the SO_2 objectives. A detailed assessment is not required for sulphur dioxide.

9 Updating and Screening Assessment for PM₁₀

9.1 THE NATIONAL PERSPECTIVE

National UK emissions of primary PM_{10} have been estimated as totalling 196000 tonnes in 2000 The main sources of primary PM10 are road transport (all road transport emits PM10, but diesel vehicles emit a greater mass of particulate per vehicle kilometre), stationary combustion (domestic coal combustion has traditionally been the major source of particulate emissions in the UK) and industrial processes (including bulk handling, construction, mining and quarrying). Emissions of PM10 from the UK have declined since 1970. This is due mainly to the reduction in coal use.

The Government established the Airborne Particles Expert Group (APEG) to advise on sources of PM_{10} in the UK and current and future ambient concentrations. Their conclusions were published in January 1999 (APEG, 1999). APEG concluded that a significant proportion of the current annual average PM_{10} is due to the secondary formation of particulate sulphates and nitrates, resulting from the oxidation of sulphur and nitrogen oxides. These are regional scale pollutants and the annual concentrations do not vary greatly over a scale of tens of kilometres. There are also natural or semi-natural sources such as wind-blown dust and sea salt particles. The impact of local urban sources is superimposed on this regional background. Such local sources are generally responsible for winter episodes of hourly mean concentrations of PM_{10} above 100 μ g m⁻³ associated with poor dispersion. However, it is clear that many of the sources of PM_{10} are outside the control of individual local authorities and the estimation of future concentrations of PM_{10} are in part dependent on predictions of the secondary particle component.

9.2 STANDARD AND OBJECTIVE FOR PM₁₀

The Government and the Devolved Administrations have adopted two Air Quality Objectives for fine particles (PM_{10}), which are equivalent to the EU Stage 1 limit values in the first Air Quality Daughter Directive. The objectives vary depending on whether the Local Authority is in Scotland or the remainder of the UK. The objectives relevant to Norwich City Council are 40 μ gm⁻³ as the annual mean, and 50 μ gm⁻³ as the fixed 24-hour mean to be exceeded on no more than 35 days per year, to be achieved by the end of 2004.

9.3 SCREENING ASSESSMENT OF PM₁₀

The Technical Guidance LAQM TG (03) requires assessment of PM_{10} to consider the following sources, data or locations:

- § Monitoring data outside an AQMA
- § Monitoring data within an AQMA
- § Busy roads and junctions in Scotland
- § Junctions
- § Roads with high flow of buses and/or HGVs
- § New roads constructed or proposed since first round of review and assessment
- § Roads close to the objective during the first round of review and assessment
- § Roads with significantly changed traffic flows
- § New industrial sources
- § Industrial sources with substantially increased emissions
- § Areas with domestic solid fuel burning
- § Quarries, landfill sites, opencast coal, handling of dusty cargoes at ports etc
- § Aircraft

These are evaluated in the following sections.

9.4 BACKGROUND CONCENTRATIONS FOR PM₁₀

The estimated average background PM₁₀ concentration estimated from the UK background maps (http://www.airguality.co.uk/archive/lagm/tools.php) in µgm⁻³ were:

	2001	2004	2010
Max	23.4	22.3	20.4
Average	22.5	21.5	19.7

9.5 SCREENING ASSESSMENT OF MONITORING DATA

Monitoring for PM_{10} has been undertaken at Norwich City Centre and Golding Place. A TEOM instrument is in place and all data are multiplied by a factor of 1.3 to ensure gravimetric equivalence. At Golding Place the monitor was only in place for the from September 2002, data for the following 4 months showed and a period average of $16\mu g \ m^{-3}$ and a maximum hourly value of $64 \ \mu g \ m^{-3}$. The Norwich Centre site showed a period average in 2002 of $10 \ \mu g \ m^{-3}$ with a maximum hourly value of $61 \ \mu g \ m^{-3}$, the data capture was 96.8%. Details of both sites are given in Appendix 1.

9.6 SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES

Traffic flow data were taken from the NAEI 2000 roads database and from manual and automatic traffic count data supplied by Norwich City Council and Norfolk County Council (Appendix 2). For screening purposes, appropriate receptor distances based the closest property where public exposure was likely appropriate speeds for the road were used. Norfolk County Council supplied traffic growth figures for 2005. These were used for the 2004 predictions, as 2004 traffic counts were not available. This provides a conservative estimate, as traffic predictions for 2005 are slightly higher than would be predicted for 2004.

9.6.1 Street Canyons

The DMRB model may significantly under-predict concentrations of nitrogen dioxide alongside urban city-centre roads classified as 'street canyons' but there is no clear evidence that this is the case for PM_{10} (Section 8.32 TG (04)) and therefore no correction is made for PM_{10} in street canyons.

Table 9.1 Predicted PM10 concentrations in 2004 and 2010 calculated using DMRB for roads in Norwich City Council

ID Link	Distance	Annual	Total %	2004	2004	2010	2010
	from link	average	HDV	PM10	Number of	PM10	Number of
	centre to	speed		(µg/m3)	PM10	(μg/m3)	PM10
	receptor	(km/h)		" O /	exceeden	0	exceeden
	(m)				ces		ces
39 A140 Colman Rd	9.3	20	6.3	29.0	24	24.0	10
40 A11 Newmarket Rd	2	20	1.8	26.8	17	23.0	8
41 A1056 Ipswich Rd	2	20	1.8	26.4	16	22.8	8
42 A147 Grapes Hill	2	20	2.2	28.6	23	24.0	10
43 A11 St Stephens Rd	2	20	2.1	27.7	20	23.5	9
44 A147 St Crispins Rd	2	20	1.8	27.9	20	23.7	9
45 A147 Barn Rd	25	20	1.7	25.6	14	22.4	7
46 A147 Barrack St	2	20	1.9	27.5	19	23.4	9
47 A1067 Pitt Street	2	20	1.6	26.7	17	23.0	8
48 A140 Boundary Rd	2	20	7.5	28.1	21	23.4	9
49 St Augustines	4.3	25	3.9	27.5	19	23.3	9
50 Castle Meadow	2	25	6.0	26.1	15	22.6	7
51 Dereham rd/Norwich rd	10	25	6.0	29.1	24	24.2	11
52 Farmers Avenue	10	20	6.0	26.8	17	22.8	8
53 Cattle Market	10	20	6.0	29.2	25	24.2	10
54 Red Lion	4.5	20	6.0	27.5	19	23.4	9
60 St Stephens	13	15	5.0	27.5	19	23.2	9

Note: a distance to road centre of 2 m was modelled as a worst case scenario. For this reason a low speed of 20km/h was also used as a default. Where this caused a problem the actual measured distance to nearest receptor was used.

The DMRB run shows no exceedences of the 2004 objective. Exceedences of the 2010 stage 2 limit value are predicted. In part this is due to the modelling using a 2m worst case scenario for some links. However, there will be an exceedance at all locations modelled as the background concentration in 2010 ($20.4 \mu gm^{-3}$) is predicted to be above the limit value even before a road contribution is added. This limit value is not included in UK regulations.

9.6.2 Busy Junctions

Annual average PM₁₀ concentrations near busy road junctions in Norwich City Council have been estimated for 2005 using DMRB (Table 9.2).

Table 9.2 Predicted PM₁₀ concentrations in 2004 and 2010 calculated using DMRB for busy junctions in Norwich City Council

	busy junctions in Norwich City Council						
ID Link	Distance	Annual	Total %	2004	2004 Number	2010	2010 Number
	from link	average	HDV	PM10	of PM10	PM10	of PM10
	centre to	speed		(µg/m3)	exceedences	(µg/m3)	exceedences
	receptor	(km/h)		0			
	(m)						
55 A140 Colman Rd /	15	46	6				
Newmarket road							
55	32	46	6	27.9	20	23.4	9
56 Red lion / farmers	17	46	6				
avenue							
56	6	46	6	27.6	20	23.3	9
57 A140 Colman Rd /	12	46	6.3				
Unthank Rd							
57	10	46	6.3	28.7	23	23.8	10
58 A147 Barn Rd /	10	46	1.7				_
Dereham Rd							
58	13	46	5	27.5	19	23.4	9
59 A147 Barn Rd /	25	46	1.7				
Chapel Rd							
Roundabout							
59	25	46	5	26	15	22.5	7
61 A147 King Street /	10	46	5	•		•	
Rouen Road							
61	10	46	3	29.2	25	24.2	11

Note: a distance to road centre of 2 m was modelled as a worst case scenario. For this reason a low speed of 20km/h was also used as default. Where this caused a problem the actual measured distance to nearest receptor was used.

There are no instances of DMRB predicting an annual mean in excess of the $40\mu gm^{-3}$ annual mean objective and / or more than 35 exceedences of the 24-hour mean, the objective for 2004. The DMRB screening model indicates that the 2004 annual mean objective for PM_{10} is not likely to be exceeded at receptors in Norwich City Council. However the DMRB model does indicate possible exceedences of the 2010 limit value at all the modelled junctions.

9.6.3 Other Traffic Assessment

There have been no roads identified, either as locations where people may spend an hour or more close to traffic or with a high flow of buses and/or HGVs that have not already been assessed. There are no new or proposed roads since the first round of review and assessment. All roads considered by Norwich City Council to have the potential to cause an exceedance of the objectives, including those close to the objective in the last round have been assessed.

9.7 SCREENING ASSESSMENT OF INDUSTRIAL SOURCES

The Guidance LAQM TG (03) lists the following processes as significant potential sources of PM_{10} :

Part A (percentage of total emissions from all UK plant in this sector to the UK total in brackets) Iron and steel (61)
Petroleum processes (4)

Combustion processes (13)

Cement/lime manufacture (7)

Carbonisation (2)

Gasification (4)

Non-ferrous metals (4) Fertilizer production

Part B

Combustion plant 20-50 MWt
Furnaces 20-50 MWt
Coal and coke processes
Quarry Process
Roadstone coating
Rubber processes
China and clay processes
Coating powder
Coil coating

The part B processes have been checked against Table in A2.182 of the Technical guidance and none of the processes in the authorisation list have the potential to emit significant quantities of PM_{10} .

None of the Part A or Part B industrial processes in Norwich City Council (Appendix 3) operate these processes or have the potential to emit significant quantities of PM_{10} .

There are no industrial processes, current or proposed, in neighbouring areas that have the potential to emit significant quantities of PM_{10} .

9.8 SCREENING ASSESSMENT OF FUGITIVE AND UNCONTROLLED SOURCES

9.8.1 Quarries and landfill sites

There are no recorded quarries or landfill sites with relevant locations for public exposure within 200m.

9.8.2 Domestic solid fuel burning

There are no data for domestic coal burning available but solid fuel use continues to decline throughout the area. It is unlikely that there are any areas with 50 houses using these fuels in a 500m square.

9.9 SCREENING ASSESSMENT OF OTHER TRANSPORT SOURCES

9.9.1 Airports

There is an airport to the north of Norwich. It lifts 144000 tonnes of freight a year and has 366796 terminal passengers a year. Both these figures lie below the screening figures stated in the guidance, i.e. a throughput of 5 million passengers per year and/or 500,000 tonnes of freight. Therefore this source does not need to be considered in a further assessment.

9.10 CONCLUSIONS FOR PM10 CONCENTRATIONS NORWICH CITY COUNCIL

The DMRB screening model indicates that the annual mean objective for PM_{10} will be met in 2004, but that exceedences of the 2010 objective are likely. It is not yet possible to declare an AQMA for the 2010 PM_{10} objective. Therefore it is advised that Norwich City Council do not proceed to a Detailed Assessment at this stage but bear in mind the possibility of having to comply with the objective and how this may affect their monitoring strategies in the region.

A detailed assessment is not required for PM_{10} in Norwich City Council at this stage as it is predicted that the 2004 objective will be met.

10 Conclusions

10.1 CARBON MONOXIDE

There are no roads in Norwich City Council that can be classified as 'very busy' according to the criteria in the guidance. Monitoring data suggest an exceedence of the objective is unlikely. A detailed assessment is not required based for carbon monoxide in Norwich City Council.

10.2 BENZENE

There are no roads in Norwich City Council that can be classified as 'very busy' according to the criteria in the guidance. There are no petrol stations with a throughput greater than 2 million litres and with relevant exposure within 10m of the pumps.

A detailed assessment is, therefore, not required based for benzene in Norwich City Council.

10.3 1,3-BUTADIENE

Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003. There are no industrial processes, current or proposed, in Norwich City Council which have the potential to emit 1,3-butadiene. A detailed assessment is not required for 1,3-butadiene in Norwich City Council.

10.4 LEAD

Emissions of lead from industrial processes in Norwich City Council are not likely to exceed the objectives for lead to be achieved in 2004 and 2008. A detailed assessment is not required for lead in Norwich City Council.

10.5 NITROGEN DIOXIDE

Predicted concentrations of nitrogen dioxide indicate that the annual average objective is likely to be exceeded in 2005 at relevant receptors situated within the existing AQMA. A stage 4 review and assessment has recently been completed and no significantly different data have become available. There are no significant industrial sources of nitrogen dioxide in Norwich City Council. There is no need to progress to a detailed assessment for this pollutant.

10.6 SULPHUR DIOXIDE

There are no significant industrial or domestic sources of sulphur dioxide in Norwich City Council that are expected to exceed the SO_2 objectives. A detailed assessment is not required for sulphur dioxide.

10.7 PM₁₀

The DMRB screening model indicates that the annual mean objective for PM_{10} will be met in 2004, but that exceedences of the 2010 limit value are likely. It is not possible to declare an AQMA for the 2010 PM_{10} limit value. Therefore it is advised that Norwich City Council do not proceed to a Detailed Assessment at this stage but bear in mind the possibility of having to comply with the objective and how this may affect their monitoring strategies in the region.

A detailed assessment is not required for $PM_{10}\,\text{in}$ Norwich City Council at this stage as it is predicted that the 2004 objective will be met.

10.8 SUMMARY AND RECOMMENDATIONS

It is recommended that a detailed review and assessment is not undertaken and Norwich City Council produces an annual progress report for DEFRA.

11 References

Part IV of the Environment Act 1995. Local Air Quality Management. LAQM.TG (03) January 2003.

Norwich City Council Stages 1 & 2 Air Quality Review and Assessment.

Stage 1 Review and Assessment of Air Quality. Norwich City Council Aug 1998. Stanger.

Stage 3 Air Quality Review and Assessment. Norwich City Council Jan 2002. Stanger Science and Environment

Stage 3 Air Quality Review and Assessment Update. August 2002. AEA Technology, Kate Haigh

Stage 4 Air Quality Review and Assessment Update. August 2003. AEA Technology, John Abbott

DETR (2000b) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland. Department of the Environment, Transport and the Regions. Cm 4548, SE 2000/3, NIA 7.

http://www.airquality.co.uk/archive/laqm/tools.php

Design Manual For Roads and Bridges. Highways Agency 2003

12 The UK Air Quality Strategy

The Government prepared the Air Quality Strategy for England, Scotland, Wales and Northern Ireland for consultation in August 1999. It was published in January 2000 (DETR, 2000)².

12.1.1 National Air Quality Standards

At the centre of the Air Quality Strategy is the use of national air quality standards to enable air quality to be measured and assessed. These also provide the means by which objectives and timescales for the achievement of objectives can be set. These standards and associated specific objectives to be achieved between 2003 and 2008 are shown in Table 12.1. The table shows the standards in $\mu g \ m^{-3}$.

Table 12.1 Objectives included in the Air Quality Regulations 2000 and (Amendment) Regulations 2002 for the purpose of Local Air Quality Management

Pollutant	Air Quality Objective Date to be					
	Concentration	Measured as	achieved by			
Benzene						
All authorities	16.25 μg/m³	running annual mean	31.12.2003			
Authorities in England and Wales only	5.00 μg/m³	annual mean	31.12.2010			
Authorities in Scotland and Northern Ireland only ^a	3.25 μg/m ³	running annual mean	31.12.2010			
1,3-Butadiene	2.25 μg/m³	running annual mean	31.12.2003			
Carbon monoxide		maximum daily running 8-hour mean	31.12.2003			
Authorities in England, Wales and Northern Ireland only ^a	10.0 mg/m ³	running 6-nour mean				
Authorities in Scotland only	10.0 mg/m³	Running 8-hour mean	31.12.2003			
Lead	0.5 μg/m³	annual mean	31.12.2004			
	0.25 μg/m³	annual mean	31.12.2008			
Nitrogen dioxide ^b	200 µg/m ³ not to be exceeded more than 18 times a year	1 hour mean	31.12.2005			
	40 μg/m³	annual mean	31.12.2005			
Particles (PM ₁₀) (gravimetric) ^c All authorities	50 μg/m³ not to be exceeded more than 35 times a year	24 hour mean	31.12.2004			
	40 μg/m³	annual mean	31.12.2004			
Authorities in Scotland only ^d	50 μg/m³ not to be exceeded more than 7 times a year	24 hour mean	31.12.2010			
	18 μg/m³	annual mean	31.12.2010			
Sulphur dioxide	350 μg/m ³ not to be exceeded more than 24 times a year	1 hour mean	31.12.2004			
	125 μg/m³ not to be exceeded more than 3 times a year	24 hour mean	31.12.2004			
	266 μg/m³ not to be exceeded more than 35 times a year	15 minute mean	31.12.2005			

a. In Northern Ireland none of the objectives are currently in regulation. Air Quality (Northern Ireland) Regulations are scheduled for consultation early in 2003.

b. The objectives for nitrogen dioxide are provisional.

c. Measured using the European gravimetric transfer sampler or equivalent.
d. These 2010 Air Quality Objectives for PM₁₀ apply in Scotland only, as set out in the Air Quality (Scotland) Amendment Regulations 2002.

12.1.2 Timescales to achieve the objectives for the pollutants in Air Quality Strategy

In most local authorities in the UK, objectives will be met for most of the pollutants within the timescale of the objectives shown in Table 12.1. It is important to note that the objectives for NO_2 remain provisional. The Government has recognised the problems associated with achieving the standard for ozone and this will not therefore be a statutory requirement. Ozone is a secondary pollutant and transboundary in nature and it is recognised that local authorities themselves can exert little influence on concentrations when they are the result of regional primary emission patterns.

12.2 AIR QUALITY REVIEWS – THE APPROACHES AND EXPECTED OUTCOMES

Technical Guidance has been issued in 'Review and Assessment: Technical Guidance' LAQM.TG (03)³ to enable air quality to be monitored, modelled, reviewed and assessed in an appropriate and consistent fashion. This updating and screening assessment has considered the procedures set out in this technical guidance.

The primary objective of undertaking a review of air quality is to identify any areas that are unlikely to meet national air quality objectives and ensure that air quality is considered in local authority decision making processes. The complexity and detail required in a review depends on the risk of failing to achieve air quality objectives and it has been proposed therefore that reviews should be carried out in two steps. Both steps of review and assessment may be necessary and every authority is expected to undertake at least a first stage review and assessment of air quality in their authority area. The steps are briefly described in the following table, Table 12.2.

Table 12.2 Brief details of steps in the second Round of the Air Quality Review and Assessment process

Level of Assessment	Objective	Approach
Updating and Screening	To identify those matters that have changed since the last review and assessment, which might lead to a risk of an air quality objective being exceeded	Use a checklist to identify significant changes that require further consideration. Where such changes are identified, than apply simple screening tools to decide whether there is sufficient risk of an exceedence of an objective to justify a Detailed Assessment
Detailed assessment	To provide an accurate assessment of the likelihood of an air quality objective being exceeded at locations with relevant exposure. This should be sufficiently detailed to allow the designation or amendment of any necessary AQMAs	Use quality-assured monitoring and validated modelling methods to determine current and future pollutant concentrations in areas where there is a significant risk of exceeding an air quality objective.
Annual Progress reports	Local authorities should prepare annual air quality Progress Reports between subsequent rounds of reviews and assessments. The concept is that this will ensure continuity in the LAQM process.	The precise format for the Progress Report has not yet been determined, but will essentially follow the checklist approach that is set out in subsequent chapters of this document. Further details on the Progress Reports will be provided via the Helpdesks by the middle of 2003. It is envisaged that these Progress Reports could be useful for the compilation of annual 'state of the

The current deadline for completion of updating and screening assessments is May 2003, and for detailed assessments April 2004.

12.3 LOCATIONS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON

For the purpose of review and assessment, the authority should focus their work on locations where members of the public are likely to be exposed over the averaging period of the objective. Table 12.3 summarises the locations where the objectives should and should not apply.

Table 12.3 Typical locations where the objectives should and should not apply

Averaging Period	Pollutants	Objectives should apply at	Objectives should <i>not</i> generally apply at
Annual mean	 1,3 Butadiene Benzene Lead Nitrogen dioxide Particulate Matter (PM₁₀) 	 All background locations where members of the public might be regularly exposed. 	 Building facades of offices or other places of work where members of the public do not have regular access.
		 Building facades of residential properties, schools, hospitals, libraries etc. 	 Gardens of residential properties.
			 Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term
24 hour mean and 8-hour mean	 Carbon monoxide Particulate Matter (PM₁₀) Sulphur dioxide 	 All locations where the annual mean objective would apply. 	 Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term.
		 Gardens of residential properties. 	

Table 12.3 (contd.) Typical locations where the objectives should and should not apply

Averaging Period	Pollutants	Objectives should apply at	Objectives should generally not apply at
1 hour mean	Nitrogen dioxideSulphur dioxide	 All locations where the annual mean and 24 and 8-hour mean objectives apply. 	 Kerbside sites where the public would not be expected to have regular access.
		 Kerbside sites (e.g. pavements of busy shopping streets). 	
		 Those parts of car parks and railway stations etc. which are not fully enclosed. 	
		 Any outdoor locations to which the public might reasonably expected to have access. 	
15 minute mean	Sulphur dioxide	 All locations where members of the public might reasonably be exposed for a period of 15 minutes or longer. 	

It is unnecessary to consider exceedences of the objectives at any location where public exposure over the relevant averaging period would be unrealistic. Locations should also represent non-occupational exposure.

Appendices

CONTENTS

Appendix 1	Monitoring Data
Appendix 2	Traffic Data and DMRB results
Appendix 3	Part B Authorised processes list
Appendix 4	Descriptions of selected models and tools
Appendix 5	Report Checklist

Appendix 1Monitoring data

CONTENTS

Norwich Monitor details AP Reports Diffusion tube data

Norwich Centre

http://www.stanger.co.uk/siteinfo/MonitoringSite.asp?ID=78

The monitoring station is within a self-contained, air-conditioned housing located within the South south western corner of a central Norwich public garden. The nearest road is located approximately 12 metres away at St George's Street although traffic flow is free flowing and very light (1 or 2 vehicles per minute observed off peak). The manifold inlet is approximately 3 metres high. The surrounding area is generally open and comprises of residential and light industrial premises.

OS Grid Reference: TG230089 Site Type: <u>Urban Centre</u> Start Date: 24/07/97

Pollutants Measured: O3,CO,SO2,PM10,NOx

Norwich Roadside

http://www.stanger.co.uk/siteinfo/MonitoringSite.asp?ID=90

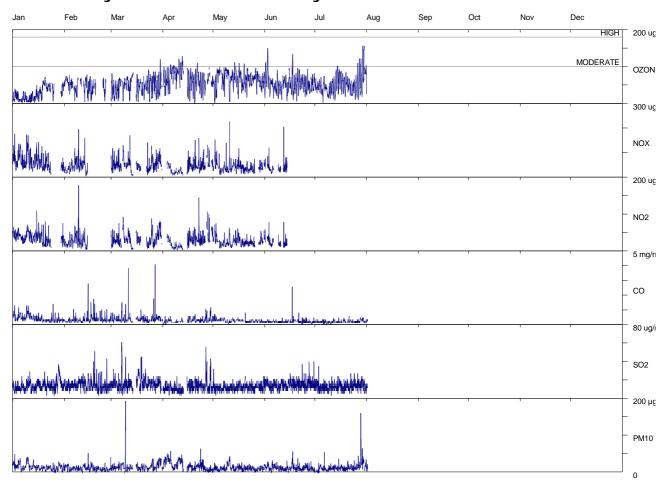
The monitoring station is within an existing office building complex approximately 6 metres from a busy 2-lane urban street. Traffic flow is approximately 16,000 vehicles per day and is subject to frequent congestion. The manifold inlet is approximately 6 metres high and is mounted close to the building facade. The surrounding area comprises retail outlet and business premises.

OS Grid Reference: TG234078

Site Type: Roadside Start Date: 21/06/97

Pollutants Measured: NOx http://www.aeat.co.uk/netcen/airqual/bulletins/

NORWICH AIRPORT January to December 2002


These data have been fully ratified by netcen

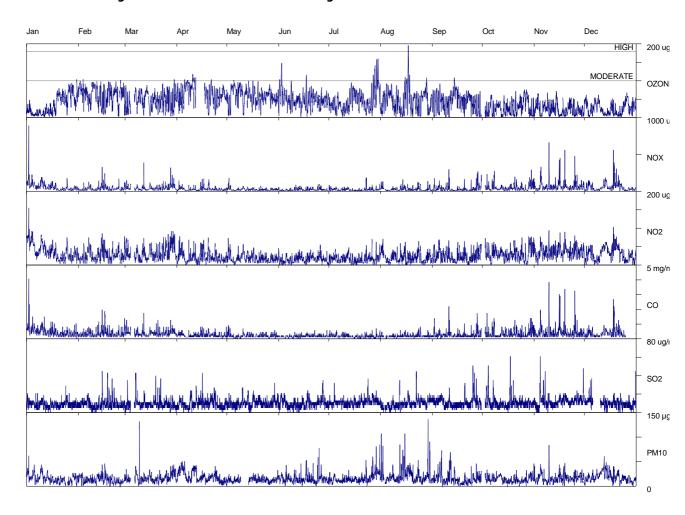
POLLUTANT	CO	NO ₂	NO _X	O_3	PM ₁₀	SO ₂
Number Very High	0	0	-	0	0	0
Number High	0	0	-	0	0	0
Number Moderate	0	0	-	170	0	0
Number Low	4952	2783	-	4318	4850	19265
Maximum 15-minute mean	9.8 mg m ⁻³	331 µg m ⁻³	539 μg m ⁻³	166 µg m ⁻³	504 μg m ⁻³	96 μg m ⁻³
Maximum hourly mean	4.1 mg m ⁻³	178 µg m ⁻³	227 μg m ⁻³	156 µg m ⁻³	193 µg m ⁻³	61 μg m ⁻³
Maximum running 8-hour	1.3 mg m ⁻³	76 µg m ⁻³	145 µg m ⁻³	139 µg m ⁻³	87 μg m ⁻³	52 μg m ⁻³
mean						
Maximum running 24-hour	0.9 mg m ⁻³	65 μg m ⁻³	126 µg m ⁻³	109 µg m ⁻³	42 µg m ⁻³	30 μg m ⁻³
mean						
Maximum daily mean	0.9 mg m ⁻³	58 μg m ⁻³	111 µg m ⁻³	101 μg m ⁻³	36 µg m ⁻³	27 μg m ⁻³
Average of hourly means	0.3 mg m ⁻³	29 μg m ⁻³	47 μg m ⁻³	52 μg m ⁻³	13 µg m ⁻³	14 µg m ⁻³
Data capture of hourly	56.2 %	31.8 %	31.8 %	50.0 %	56.0 %	56.1 %
means						

All mass units are at 20°C and 1013mb $\rm NO_X$ mass units are $\rm NO_X$ as $\rm NO_2$

Pollutant	Air Quality Strategy Standard (Jan 2000) and (Amendment) Regulations 2002	Exceedences	Days
Carbon Monoxide	Running 8-hour mean > 10.0 mg m ⁻³	0	0
Nitrogen Dioxide	Annual mean > 40 µg m ⁻³	0	-
Nitrogen Dioxide	Hourly mean > 200 µg m ⁻³	0	0
Nitrogen Oxides (NO ₂)	Annual mean > 30 µg m ⁻³	1	-
Ozone	Running 8-hour mean > 100 µg m ⁻³	85	14
PM ₁₀ Particulate Matter (Gravimetric)	Daily mean > 50 μg m ⁻³	0	0
PM ₁₀ Particulate Matter (Gravimetric)	Annual mean > 40 µg m ⁻³	0	-
Sulphur Dioxide	15-minute mean > 266 µg m ⁻³	0	0
Sulphur Dioxide	Hourly mean > 350 µg m ⁻³	0	0
Sulphur Dioxide	Daily mean > 125 µg m ⁻³	0	0
Sulphur Dioxide	Annual mean > 20 μg m ⁻³	0	-

Norwich Airport Air Monitoring Hourly Mean Data for January to December 2002

NORWICH CENTRE January to December 2002 These data have been fully ratified by netcen


Small grassed open space on edge of city centre.

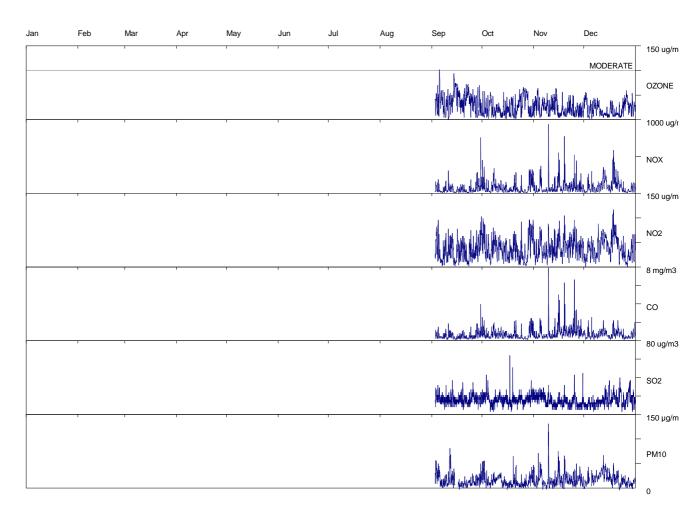
POLLUTANT	СО	NO ₂	NO _X	O_3	PM ₁₀	SO ₂
Number Very High	0	0	-	0	0	0
Number High	0	0	-	2	0	0
Number Moderate	0	0	-	159	0	0
Number Low	8436	8317	-	8370	8449	33178
Maximum 15-minute	5.1 mg m ⁻³	170 µg m ⁻³	1037 µg m ⁻³	202 μg m ⁻³	218 µg m ⁻³	96 μg m ⁻³
mean						
Maximum hourly mean	4.1 mg m ⁻³	155 µg m ⁻³	890 μg m ⁻³	196 µg m ⁻³	136 µg m ⁻³	61 μg m ⁻³
Maximum running 8-hour	2.5 mg m ⁻³	94 μg m ⁻³	402 μg m ⁻³	170 µg m ⁻³	61 µg m ⁻³	38 µg m ⁻³
mean						
Maximum running 24-hour	1.1 mg m ⁻³	84 µg m ⁻³	217 μg m ⁻³	120 µg m ⁻³	43 μg m ⁻³	24 μg m ⁻³
mean						
Maximum daily mean	1.1 mg m ⁻³	81 μg m ⁻³	198 μg m ⁻³	108 µg m ⁻³	38 μg m ⁻³	21 µg m ⁻³
Average of hourly means	0.3 mg m ⁻³	25 μg m ⁻³	39 μg m ⁻³	44 μg m ⁻³	16 μg m ⁻³	10 μg m ⁻³
Data capture of hourly	96.3 %	94.9 %	94.9 %	94.8 %	96.5 %	96.8 %
means						

All mass units are at 20'C and 1013mb NO_X mass units are NO_X as NO_2

Pollutant	Air Quality Strategy Standard (Jan 2000) and (Amendment) Regulations 2002	Exceedences	Days
Carbon Monoxide	Running 8-hour mean > 10.0 mg m ⁻³	0	0
Nitrogen Dioxide	Annual mean > 40 µg m ⁻³	0	-
Nitrogen Dioxide	Hourly mean > 200 µg m ⁻³	0	0
Nitrogen Oxides (NO ₂)	Annual mean > 30 µg m ⁻³	1	-
Ozone	Running 8-hour mean > 100 µg m ⁻³	75	11
PM ₁₀ Particulate Matter (Gravimetric)	Daily mean > 50 μg m ⁻³	0	0
PM ₁₀ Particulate Matter (Gravimetric)	Annual mean > 40 μg m ⁻³	0	-
Sulphur Dioxide	15-minute mean > 266 µg m ⁻³	0	0
Sulphur Dioxide	Hourly mean > 350 µg m ⁻³	0	0
Sulphur Dioxide	Daily mean > 125 µg m ⁻³	0	0
Sulphur Dioxide	Annual mean > 20 µg m ⁻³	0	-

Norwich Centre Air Monitoring Hourly Mean Data for January to December 2002

NORWICH GOLDING PLACE January to December 2002


These data have been fully ratified by netcen

POLLUTANT	CO	NO ₂	NO _X	O ₃	PM ₁₀	SO ₂
Number Very High	0	0	-	0	0	0
Number High	0	0	-	0	0	0
Number Moderate	0	0	-	1	7	0
Number Low	2875	2867	-	2879	2761	11247
Maximum 15-minute	10.1 mg m ⁻³	127 µg m ⁻³	1194 µg m ⁻³	104 µg m ⁻³	147 µg m ⁻³	97 μg m ⁻³
mean						
Maximum hourly mean	7.9 mg m ⁻³	117 µg m ⁻³	938 µg m ⁻³	102 μg m ⁻³	131 µg m ⁻³	64 µg m ⁻³
Maximum running 8-hour	4.6 mg m ⁻³	104 µg m ⁻³	551 µg m ⁻³	89 µg m ⁻³	95 μg m ⁻³	33 µg m ⁻³
mean						
Maximum running 24-	2.4 mg m ⁻³	83 µg m ⁻³	336 µg m ⁻³	71 µg m ⁻³	53 μg m ⁻³	29 µg m ⁻³
hour mean						
Maximum daily mean	2.0 mg m ⁻³	80 μg m ⁻³	282 μg m ⁻³	69 μg m ⁻³	42 μg m ⁻³	29 μg m ⁻³
Average of hourly means	0.7 mg m ⁻³	37 μg m ⁻³	76 μg m ⁻³	26 μg m ⁻³	16 µg m ⁻³	16 µg m ⁻³
Data capture of hourly	32.8 %	32.7 %	32.7 %	32.8 %	31.7 %	32.8 %
means						

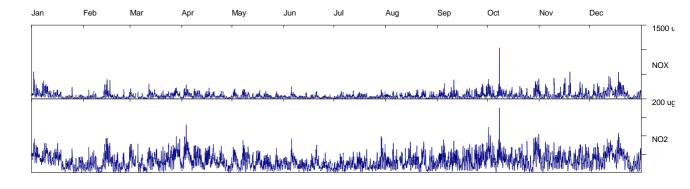
All mass units are at 20°C and 1013mb $\rm NO_X$ mass units are $\rm NO_X$ as $\rm NO_2$

Pollutant	Air Quality Strategy Standard (Jan 2000) and (Amendment) Regulations 2002	Exceedences	Days
Carbon Monoxide	Running 8-hour mean > 10.0 mg m ⁻³	0	0
Nitrogen Dioxide	Annual mean > 40 µg m ⁻³	0	-
Nitrogen Dioxide	Hourly mean > 200 µg m ⁻³	0	0
Nitrogen Oxides (NO ₂)	Annual mean > 30 µg m ⁻³	1	-
Ozone	Running 8-hour mean > 100 µg m ⁻³	0	0
PM ₁₀ Particulate Matter (Gravimetric)	Daily mean > 50 μg m ⁻³	1	1
PM ₁₀ Particulate Matter (Gravimetric)	Annual mean > 40 μg m ⁻³	0	-
Sulphur Dioxide	15-minute mean > 266 µg m ⁻³	0	0
Sulphur Dioxide	Hourly mean > 350 µg m ⁻³	0	0
Sulphur Dioxide	Daily mean > 125 μg m ⁻³	0	0
Sulphur Dioxide	Annual mean > 20 µg m ⁻³	0	-

Norwich Golding Place Air Monitoring Hourly Mean Data for January to December 2002

NORWICH ROADSIDE January to December 2002

These data have been fully ratified by netcen


Located in the Guildhall with traffic flow approximately 10,000 vehicles per day.

POLLUTANT	NO ₂	NO _X		
Number Very High	0	-		
Number High	0	-		
Number Moderate	0	-		
Number Low	8555	-		
Maximum 15-minute mean	275 μg m ⁻³	1864 µg m ⁻³		
Maximum hourly mean	176 µg m ⁻³	1039 µg m ⁻³		
Maximum running 8-hour mean	96 μg m ⁻³	324 μg m ⁻³		
Maximum running 24-hour mean	72 μg m ⁻³	245 µg m ⁻³		
Maximum daily mean	67 μg m ⁻³	206 μg m ⁻³		
Average of hourly means	30 μg m ⁻³	61 µg m ⁻³		
Data capture of hourly means	97.7 %	97.7 %		

All mass units are at 20°C and 1013mb $\rm NO_X$ mass units are $\rm NO_X$ as $\rm NO_2$

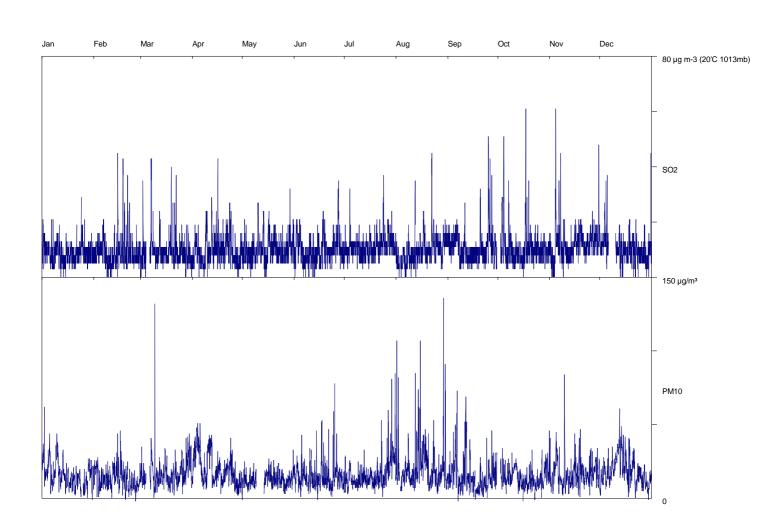
Pollutant	Air Quality Strategy Standard (Jan 2000) and	Exceedences	Days
	(Amendment) Regulations 2002		
Nitrogen Dioxide	Annual mean > 40 µg m ⁻³	0	-
Nitrogen Dioxide	Hourly mean > 200 μg m ⁻³	0	0
Nitrogen Oxides (NO ₂)	Annual mean > 30 µg m ⁻³	1	-

Norwich Roadside Air Monitoring Hourly Mean Data for January to December 2002

Produced by netcen on behalf of defra

NORWICH CENTRE 1 January to 31 December 2002 These data have been fully ratified by netcen

Small grassed open space on edge of city centre.


criain grassou open space on sage or only control										
POLLUTANT	SO ₂	PM ₁₀								
Number Very High	0	0								
Number High	0	0								
Number Moderate	0	0								
Number Low	33178	8449								
Maximum 15-minute mean	96 μg m ⁻³	218 µg m ⁻³								
Maximum hourly mean	61 µg m ⁻³	136 µg m ⁻³								
Maximum running 8-hour mean	38 µg m ⁻³	61 µg m ⁻³								
Maximum running 24-hour mean	24 µg m ⁻³	43 µg m ⁻³								
Maximum daily mean	21 µg m ⁻³	38 µg m ⁻³								
Average	10 μg m ⁻³	16 µg m ⁻³								
Data capture	96.8 %	96.5 %								

All mass units are at 20'C and 1013mb

Pollutant	Air Quality Regulations (2000) and (Amendment) Regulations 2002	Exceedences	Days
Sulphur Dioxide	15-minute mean > 266 µg m ⁻³	0	0
Sulphur Dioxide	Hourly mean > 350 µg m ⁻³	0	0
Sulphur Dioxide	Daily mean > 125 µg m ⁻³	0	0
Sulphur Dioxide	Annual mean	-	-
PM ₁₀ Particulate Matter (Gravimetric)	Daily mean > 50 µg m ⁻³	0	0
PM ₁₀ Particulate Matter (Gravimetric)	Annual mean > 40 μg m ⁻³	0	-

Produced by netcen on behalf of defra

Norwich Centre Air Monitoring Hourly Mean Data for 1 January to 31 December 2002

NONE

Place	Apr-02	May-02	Jun-02	Jul-02	Aug-02	Sep-02	Oct-02	Nov-02		Dec-02	Jan-03	Feb-03
1 Vulcan Rd	12	13	15	15	14	17	13	26	1 Vulcan Rd	21	35	32
2 Heartsease	17	12	15				13	20	2 Heartsease	13	15	22
3 Tombland	21	17	17	20	13	16	13	22	3 Tombland	19	20	22
4 Cattlemarket	16	14	9	22	18	18	17		4 Cattlemarket	25	20	33
5 St Stephens	20	3	13	26	17	18	15	21	5 St Stephens	22	21	22
6 Ipswich Rd	16	7	9	13	9	13	16	21	6 Ipswich Rd	16	19	26
7 Earlham Rd	17	10	13	15	12	17	10	22	7 Earlham Rd	18	17	27
8 Colman Rd	14	12	18	12	13	14	18	15	8 Colman Rd	46	18	19
9 Unthank Rd	18	10	12	20	20	18	13	23	9 Unthank Rd	21	18	27
10 Johnstone PI	18	14	14	21	20	23	12	24	10 Johnstone Pl	23	21	34
11 Chapelfield	13	9	11	8	10	14	20		12 Castlemeadow	21	21	29
12 Castlemeadow	21	8		19	14	15	11	24	13 Guildhall	18	15	18
13 Guildhall	12	5	3	4	11	15	10	21	14 Exchange St	17	19	25
14 Exchange St	15	11	11	13	17	17	17	20	15 St Georges		16	25
15 St Georges	6	6	7	9		17	9	18	16 St Augustines	23	25	29
16 St Augustines	21	20	23	25	22	20	15	29	17 Ber St 1	17	10	21
17 Ber St	12	12	12	12	8	8	11	20	18 Ber St 2	17		
18 Ber St 2							10	14	19 Ber St 3	14		
1 Parmeter PI	6	7	8	8	6	12	14	25	A Riverside	26	25	28
2 Rouen Rd	12	13	14	13	17	13			B Eastbourne PI	21	17	30
3 Paragon Pl	14	13	13	10	14	15			C St Vedast St	20	17	26
4 Upper St Giles	14	9	14	11	13	13			D Upper King St	18	18	26
5 Copeman St	14	9	10	10	12	16			E Castlemeadow	18	20	28
6 Opie St	14	9	8	10	16	15						
7 Cassella	10	14	7	11	16	14						
8 Golding Pl	14	10	12	8	12	16						
9 St Augustines - Colmans	20	10		8	16	18						
10 St Augustines - top	21	0	16	15	20	18						
11 Bull Close	11	8	12	7	14	20						
12 Spencer St	15	13	9	11	8	9						

OS References for NO2 Diffusion Tubes STAGE IV		
Parmeter PI	623467	3008418
Rouen Rd	623302	308310
Paragon PI	622381	308648
Upper St Giles	622457	308571
Copeman St	622451	308701
Opie St	623182	308633
Cassella	622392	308844
Golding PI	622392	308761
St Augustines - Colmans(south end)	622915	309485
St Augustines - top (north end)	622795	309626
OS References for NO2 Diffusion Tubes		
Vulcan Rd	622226	311746
Heartsease	625231	310098
Tombland	623335	308853
Cattlemarket	623290	308394
St Stephens	622847	308025
Ipswich Rd	622546	307504
Earlham Rd	619120	308259
Colman Rd	621084	308519
Unthank Rd	622003	308112
Johnstone PI	622460	308444
Chapelfield	622596	308238
Castlemeadow	623155	308604
Guildhall	622931	308560
Exchange St	623000	308714
St Georges	623085	308895
St Augustines	622818	309582
Ber St	623451	307811

Appendix 2Traffic Flow Data

CONTENTS

Norwich City traffic data DMRB 2004 DMRB2005 DMRB 2010

Norwich City AADT traffic flows

				1999	1999 AADT			2005 AADT Low		2005 AADT Ave			2005 AADT High			
Norwich City			AMV		HGV	% HGV	AMV		HGV	AMV		HGV	AMV	HGV	% HGV	
A140 Colman Rd	A140	Colman Rd		20889	1323	6.3%		22101	1400	22	2936	1453	23772	1506	6.3	
A11 Newmarket Rd	A11	Newmarket Rd		17190	303	1.8%		18187	321	18	3875	333	19562	345	1.8	
A1056 Ipswich Rd	A1056	Ipswich Rd		13686	241	1.8%		14480	255	15	5027	265	15575	274	1.8	
A147 Grapes Hill	A147	Grapes Hill		34993	779	2.2%		37023	824	38	3422	855	39822	887	2.2	
A11 St Stephens Rd	A11	St Stephens Rd		24327	516	2.1%		25738	546	20	3711	567	27684	587	2.1	
A147 St Crispins Rd	A147	St Crispins Rd		29228	537	1.8%		30923	568	32	2092	590	33261	611	1.8	
A147 Barn Rd	A147	Barn Rd		35338	598	1.7%		37388	633	38	3801	657	40215	681	1.7	
A147 Barrack St	A147	Barrack St		24003	462	1.9%		25395	489	20	355	507	27315	526	1.9	
A1067 Pitt Street	A1067	Pitt Street		17303	282	1.6%		18307	298	18	3999	310	19691	321	1.6	
A140 Boundary Rd	A140	Boundary Rd		24039	1806	7.5%		25433	1911	20	395	1983	27356	2055	7.5	

2010 AADT High
25631
21092
16793
42936
29849
35863
43360
29452
21231
29496

2004 DMRB Predictions

Docontor	Link no	Distance	Troffic 4	flow 9	Т т	raffic	Т г	Backgrou	DIVIKB F	redici	110113		Т-	otal					
Receptor	LITIK TIO	from link				ranic mpositi													
		centre to	spe	eu	100	on								concentrations					
		receptor				OH													
		(m)																	
		(111)	AADT	Annual	<u> </u>	Road	СО	Benzen	1,3-	NOx	NO2	PM10	СО	Benzen	1,3-	NOx	NO2	PM10	Number of
			(combine			type	(mg/	e	butadie	(mg/	(mg/m3		(mg/m3		butadie		(mg/m3		PM10
			`	e speed		A,B)	m3)	(mg/m3	ne	m3)	(1119/1110	(mg/mo)	(1119/1110	(mg/m3	ne	(1119/1110	(1119/1110	(mg/mo)	exceedenc
			veh/day)	(km/h)	Ή `	, (,)	1110)	(1119/1110	(mg/m3	1110)	,		,	(mg/mo	(mg/m3	,	,		es
			von/day)	(1311/11)				,)					,)				
									,						,				
						Total													
						10tai													
						HDV													
39	A140	9.3	23771.68	20	Α	6.3	0.378	0.7167	0.25		28.644	22.3	0.63	1.05	0.63	97.5	38.9	29.0	24
10	Colman Rd		40500.00				308	84	0.05	6	3	20.0	0.04	4.05	0.40		24.0	20.0	4.0
40	A11	2	19562.22	20	Α	1.8	0.378	0.7167	0.25	50.17	28.644	22.3	0.64	1.05	0.49	77.3	34.9	26.8	17
	Newmarket Rd						308	84		ь	3								
41	A1056	2	15574.67	20	Α	1.8	0.378	0.7167	0.25	50.17	28.644	22.3	0.62	0.98	0.44	74.9	34.5	26.4	16
41	Ipswich Rd	_	13374.07	20	_	1.0	308	84	0.23	50.17	20.044		0.02	0.90	0.44	74.9	34.5	20.4	10
42	A147	2	39822.03	20	Α	2.2	0.378	0.7167	0.25	50.17	28.644		0.73	1.39	0.77	89.3	37.3	28.6	23
72	Grapes Hill	_	33022.03	20		2.2	308	84	0.23	6	20.044	22.0	0.73	1.55	0.11	03.5	37.3	20.0	23
43	A11 St	2	27684.13	20	Α	2.1	0.378	0.7167	0.25	50.17	28.644	22.3	0.68	1.18	0.61	83.4	36.2	27.7	20
75	Stephens	_	27004.10				308	84	0.23	6	20.044	22.0	0.00	1.10	0.01	00.4	30.2	21.1	20
	Rd							"											
44	A147 St	2	33261.46	20	Α	1.8	0.378	0.7167	0.25	50.17	28.644	22.3	0.71	1.28	0.67	84.1	36.3	27.9	20
	Crispins Rd	_					308	84	0.20	6	3			0	0.01		00.0		
45	A147 Barn	25	40214.64	20	Α	1.7	0.378	0.7167	0.25	50.17	28.644	22.3	0.58	1.10	0.53	70.3	33.5	25.6	14
	Rd						308	84		6	3								
46	A147	2	27315.41	20	Α	1.9	0.378	0.7167	0.25	50.17	28.644	22.3	0.68	1.18	0.60	82.1	35.9	27.5	19
	Barrack St						308	84		6	3								
47	A1067 Pitt	2	19690.81	20	Α	1.6	0.378	0.7167	0.25	50.17	28.644	22.3	0.65	1.05	0.49	76.7	34.8	26.7	17
	Street						308	84		6	3								
48	A140	2	27356.38	20	Α	7.5	0.378	0.7167	0.25	50.17	28.644	22.3	0.69	1.16	0.79	114.6	41.9	31.2	32
	Boundary						308	84		6	3								

	Rd																		
49	St	4.3	23088	25	Α	3.9	0.378		0.25		28.644	22.3	0.61	1.03	0.53	85.8	36.7	27.5	19
50	Augustines castle meadow	2	10433	25	Α	6	308 0.378 308		0.25	50.17 6	28.644 3	22.3	0.52	0.86	0.41	78.1	35.1	26.1	15
51	Dereham rd/Norwich rd	10	38283	25	Α	6	0.378 308		0.25		28.644	22.3	0.63	1.18	0.75	100.0	39.4	29.1	24
52	farmers avenue	10	12792	5	Α	6	0.378 308	0.7167 84		50.17 6	28.644 3	22.3	0.93	1.19	0.77	107.8	40.7	32.2	36
53	cattle market	10	28704	20	Α	6	0.378 308			50.17 6	28.644 3	22.3	0.65	1.12	0.69	98.5	39.1	29.2	25
54	red lion	4.5	13104	20	Α	6	0.378	0.7167	0.25	50.17 6		22.3	0.58	0.92	0.47	86.4	36.8	27.5	19
55	A140 Colman Rd	15	23772	20	Α	6	0.378 308		0.25		28.644	22.3							
55	Newmarket road	32	19562	20	Α	6	0.378 308	0.7167 84	0.25	50.17 6	28.644 3	22.3	0.72	1.16	0.73	111.7	41.4	31.1	32
56	red lion	17	11768.5	20	Α	6	0.378 308	0.7167 84		50.17 6	28.644 3	22.3							
56	farmers avenue	6	12792	20	Α	6	0.378 308	0.7167 84		50.17 6		22.3	0.71	1.05	0.61	109.2	41.0	30.7	30
57	A140 Colman Rd	12	23772	20	Α	6.3	0.378 308	0.7167 84		50.17 6	28.644 3	22.3							
57	cross road (unthank rd)	10	5000	20	Α	6.3	0.378 308			50.17 6	28.644 3	22.3	0.76	1.10	0.68	120.8	42.9	32.3	37
58	A147 Barn Rd	10	40214.64	20	Α	1.7	0.378 308		0.25	50.17 6		22.3							
58	Junction with Dereham rd	13	5000	20	Α	5	0.378 308	0.7167 84		50.17 6	28.644 3	22.3	0.83	1.36	0.74	98.4	39.1	30.1	28
59	A147 Barn Rd	25	40214.64	20	Α	1.7	0.378 308	84	0.25	50.17 6	28.644 3	22.3							
59	Chapel Rd Roundabout	25	5000	20	Α	5	0.378 308	84		50.17 6	3	22.3		1.15	0.58	84.4	36.4	27.8	20
60	St Stephens	13	15000	15	Α	5	0.378 308	0.7167 84		50.17 6		22.3	0.62	0.95	0.49	84.7	36.5	27.5	19
61	A147 King Street	10	33312	25	Α	5	0.378 308	0.7167 84		50.17 6	28.644 3	22.3							
61	Rouen Rd	10	7152	25	Α	3	0.378 308			50.17 6		22.3	0.77	1.21	0.73	116.9	42.3	31.8	34

2005 DMRB Predictions

	1	1			_			005 DM		diction	าร								
Rec		Distance	Traffic flow & speed			raffic		Background Total											
epto		from link		cor		npositi	CC	concentrations concentrations											
r		centre to				on													
		receptor																	
		(m)																	
			AADT	Annual	F	Road		Benzen	1,3-	NOx	NO2	PM10	CO	Benz	1,3-	NOx		PM10	Number of
			(combined,	average	1	ype	(mg/	е	butadie	(mg/	(mg/	(mg/	(mg/m3	ene	butadien	(mg/m3	(mg/	(mg/	PM10
			veh/day)	speed	(A,B)	m3)	(mg/m3	ne	m3)	m3)	m3))	(mg/	е)	m3)	m3)	exceedenc
				(km/h))	(mg/m3					m3)	(mg/m3)				es
)					-					
	Link no						•		,										
						Total													
						%													
						HDV													
39	A140 Colman Rd	9.3	23771.68	20	Α	6.3	0.378	0.6775	0.25	48	27.8	22.10	0.60	0.97	0.58	92.6	37.6	28.4	22
39	A140 Collilaii Nu	3.3	23771.00	20	^	0.5	308	44	0.23	40	27.0	404	0.00	0.91	0.50	32.0	37.0	20.4	22
40	A11 Newmarket	2	19562.22	20	Α	1.8	0.378	0.6775	0.25	48	27.8		0.61	0.96	0.45	73.3	33.8	26.2	16
40	Rd	2	19302.22	20	A	1.0	308		0.23	40	21.0	404	0.61	0.90	0.43	13.3	33.6	20.2	16
			45574.67	00		4.0		44	0.05	40	07.0		0.50	0.00	0.44	74.4	00.0	05.0	4.5
41	A1056 Ipswich	2	15574.67	20	Α	1.8	0.378	0.6775	0.25	48	27.8		0.59	0.90	0.41	71.1	33.3	25.9	15
	Rd		22222		_		308	44				404							
42	A147 Grapes Hill	2	39822.03	20	Α	2.2	0.378	0.6775	0.25	48	27.8		0.68	1.25	0.69	84.6	36.1	27.9	20
							308	44				404							
43	A11 St Stephens	2	27684.13	20	Α	2.1	0.378	0.6775	0.25	48	27.8		0.64	1.08	0.55	79.1	35.0	27.1	18
	Rd						308	44				404							
44	A147 St Crispins	2	33261.46	20	Α	1.8	0.378	0.6775	0.25	48	27.8		0.66	1.16	0.60	79.7	35.1	27.3	18
	Rd						308	44				404							
45	A147 Barn Rd	25	40214.64	20	Α	1.7	0.378	0.6775	0.25	48	27.8	22.10	0.55	1.01	0.49	66.8	32.4	25.2	13
							308	44				404							
46	A147 Barrack St	2	27315.41	20	Α	1.9	0.378	0.6775	0.25	48	27.8	22.10	0.64	1.07	0.54	77.8	34.7	26.9	17
							308	44				404							
47	A1067 Pitt Street	2	19690.81	20	Α	1.6	0.378	0.6775	0.25	48	27.8	22.10	0.61	0.96	0.45	72.7	33.7	26.2	15
							308	44				404							
48	A140 Boundary	2	27356.38	20	Α	7.5	0.378	0.6775	0.25	48	27.8		0.65	1.06	0.72	108.7	40.5	30.5	29
	Rd	_					308	44	0.20			404	0.00	1.00	02	100.7		00.0	20
49	St Augustines	4.3	23088	25	Α	3.9	0.378	0.6775	0.25	48	27.8		0.58	0.95	0.49	81.4	35.5	26.9	17
73	Ot Augustines	7.5	23000	23	^	3.3	308	44	0.20	70	27.0	404	0.50	0.33	0.43	01.4	33.3	20.3	17
50	castle meadow	2	10433	25	Α	6	0.378	0.6775	0.25	48	27.8		0.50	0.80	0.39	74.3	34.0	25.7	14
30	Castle IlleadOW		10433	25	A	O	308		0.25	40	21.0		0.50	0.60	0.39	14.3	34.0	25.7	14
	Danahan	40	20202	25	_	•		44	0.05	40	07.0	404	0.00	4.07	0.00	04.0	00.0	00.5	
51	Dereham	10	38283	25	Α	6	0.378	0.6775	0.25	48	27.8		0.60	1.07	0.68	94.9	38.0	28.5	22
	rd/Norwich rd						308	44				404							

52	farmers avenue	10	12792	5	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.86	1.10	0.70	102.2	39.4	31.1	32
53	cattle market	10	28704	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.61	1.02	0.63	93.6	37.8	28.5	22
54	red lion	4.5	13104	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.55	0.85	0.44	82.2	35.6	26.9	17
55	A140 Colman Rd	15	23772	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404							
55	Newmarket road	32	19562	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.67	1.05	0.67	106.0	40.0	30.3	29
56	red lion	17	11768.5	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	22.10 404							
56	farmers avenue	6	12792	20	Α	6	0.378 308	0.6775 44	0.25	48	27.8	404	0.66	0.96	0.56	103.6	39.6	30.0	27
57	A140 Colman Rd	12	23772	20	Α	6.3	0.378 308	0.6775 44	0.25	48	27.8	22.10 404							
57	cross road (unthank rd)	10	5000	20	Α	6.3	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.71	1.01	0.62	114.6	41.5	31.5	33
58	A147 Barn Rd	10	40214.64	20	Α	1.7	0.378 308	0.6775 44	0.25	48	27.8	404							
58	Junction with Dereham rd	13	5000	20	Α	5	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.77	1.23	0.66	93.1	37.7	29.4	25
59	A147 Barn Rd	25	40214.64	20	Α	1.7	0.378 308	0.6775 44	0.25	48	27.8	404							
59	Chapel Rd Roundabout	25	5000	20	Α	5	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.65	1.05	0.53	80.1	35.2	27.3	18
60	St Stephens	13	15000	15	Α	5	0.378 308	0.6775 44	0.25	48	27.8	404	0.58	0.88	0.46	80.5	35.3	27.0	18
61	A147 King Street	10	33312	25	Α	5	0.378 308	0.6775 44	0.25	48	27.8	22.10 404							
61	Rouen Rd	10	7152	25	Α	3	0.378 308	0.6775 44	0.25	48	27.8	22.10 404	0.72	1.10	0.66	110.7	40.8	31.0	31

2010 DMRB Predictions

Recep		Dictance	Traffic flov	v & chocd	т.	raffic			RB Predi	Ctio	13		٦ -	Total					
tor		from link	Trailic liov	v & speeu		npositi		Background concentrations Total concentrations											
loi		centre to			on								COLICE	illialions					
		receptor				011													
		(m)																	
		(***)	AADT	Annual	R	Road	СО	Benzene	1,3-	NOx	NO2	PM10	CO	Benzene	1,3-	NOx	NO2	PM10	Number of
			(combine	average		ype	(mg/	(mg/m3)	butadiene			(mg/	(mg/	(mg/m3)	butadiene	(mg/		(mg/m3	PM10
			` d,	speed		Á,B)	m3)	,	(mg/m3))	m3)	m3)	, ,	(mg/m3)	m3)	`)	`)	exceedenc
			veh/day)	(km/h)															es
	Link no																		
	LINK NO					.													
						Total													
						% HDV													
39	A140 Colman	9.3	25630.8	20	Α	6.3	0.378	0.592	0.25	38.7	23.9	20.4	0.54	0.81	0.49	69.2	31.2	24.0	10
	Rd	0.0				0.0	308		0.20	00.1	20.0	20	0.01	0.01	0.10	00.2	01.2	20	
40	A11 Newmarket	2	21092.13	20	Α	1.8	0.378	0.592	0.25	38.7	23.9	20.4	0.55	0.81	0.39	56.2	28.3	23.0	8
	Rd						308												
41	A1056 Ipswich	2	16792.72	20	Α	1.8	0.378		0.25	38.7	23.9	20.4	0.53	0.76	0.36	54.6	28.0	22.8	8
40	Rd		10000 11				308				20.0	00.4	0.00	4.00	0.50	00.0	00.4	040	10
42	A147 Grapes Hill	2	42936.41	20	Α	2.2	0.378 308		0.25	38.7	23.9	20.4	0.60	1.03	0.56	63.9	30.1	24.0	10
43	A11 St	2	29849.23	20	Α	2.1	0.378		0.25	20 7	23.9	20.4	0.57	0.90	0.46	60.1	29.2	23.5	9
43	Stephens Rd		23043.23	20	^	2.1	308		0.23	30.1	23.9	20.4	0.57	0.90	0.40	00.1	29.2	23.5	9
44	A147 St	2	35862.76	20	Α	1.8	0.378		0.25	38 7	23.9	20.4	0.59	0.96	0.49	60.6	29.3	23.7	9
	Crispins Rd	_	00002				308		0.20	00.1	20.0	20	0.00	0.00	0.10	00.0	20.0	20.7	J
45	A147 Barn Rd	25	43359.73	20	Α	1.7	0.378		0.25	38.7	23.9	20.4	0.51	0.84	0.41	51.7	27.3	22.4	7
							308												
46	A147 Barrack	2	29451.68	20	Α	1.9	0.378		0.25	38.7	23.9	20.4	0.57	0.89	0.45	59.2	29.1	23.4	9
	St		24222 = 2				308				20.0	00.4	0.55	0.04	0.00				
47	A1067 Pitt Street	2	21230.78	20	A	1.6	0.378 308		0.25	38.7	23.9	20.4	0.55	0.81	0.39	55.8	28.2	23.0	8
48	A140 Boundary	2	29495.85	20	Α	7.5	0.378	0.592	0.25	38.7	23.9	20.4	0.58	0.88	0.60	80.2	33.5	25.2	13
	Rd						308												
49	St Augustines	4.3	24893.65	25	Α	3.9	0.378		0.25	38.7	23.9	20.4	0.52	0.80	0.42	61.7	29.6	23.3	9
		2	11240 04	25	^	6	308		0.05	20.7	22.2	20.4	0.47	0.00	0.05	F7 0	20.7	22.0	7
50	castle meadow	2	11248.94	25	Α	6	0.378 308		0.25	აგ./	23.9	20.4	0.47	0.69	0.35	57.6	28.7	22.6	/
51	Dereham	10	41277.01	25	Α	6	0.378		0.25	38.7	23.9	20.4	0.54	0.90	0.57	70.9	31.6	24.2	11
31	rd/Norwich rd	10	71211.01	23		U	308		0.23	30.7	23.9	20.4	0.54	0.90	0.57	70.9	31.0	24.2	- 11
52	farmers avenue	10	13792.43	5	Α	6	0.378		0.25	38.7	23.9	20.4	0.73	0.92	0.58	76.6	32.7	25.4	13
			2.22.0			-	3.5.0	0.002	0.20				J U	5.52	3.00		0		63

							308												
53	cattle market	10	30948.86	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.55	0.85	0.53	69.9	31.4	24.2	10
54	red lion	4.5	14128.83	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.51	0.72	0.39	63.2	29.9	23.4	9
55	A140 Colman Rd	15	25631.15	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
55	Newmarket road	32	21091.89	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.60	0.88	0.55	78.4	33.1	25.2	13
56	red lion	17	12688.88	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
56	farmers avenue	6	13792.43	20	Α	6	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.60	0.81	0.48	78.5	33.1	25.2	13
57	A140 Colman Rd	12	25631.15	20	Α	6.3	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
57	cross road (unthank rd)	10	5391.037	20	Α	6.3	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.63	0.84	0.52	86.4	34.6	26.1	15
58	A147 Barn Rd	10	43359.73	20	Α	1.7	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
58	Junction with Dereham rd	13	5391.037	20	Α	5	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.66	1.01	0.54	69.8	31.3	25.0	12
59	A147 Barn Rd	25	43359.73	20	Α	1.7	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
59	Chapel Rd Roundabout	25	5391.037	20	Α	5	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.58	0.87	0.44	60.8	29.4	23.6	9
60	St Stephens	13	16173.11	15	Α	5	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.53	0.74	0.40	60.9	29.4	23.2	9
61	A147 King Street	10	35917.24	25	Α	5	0.378 308	0.592	0.25 3	88.7	23.9	20.4							
61	Rouen Rd	10	7711.339	25	A	3	0.378 308	0.592	0.25 3	88.7	23.9	20.4	0.63	0.92	0.55	81.8	33.8	25.7	14

Appendix 3Part B Authorised processes list

CONTENTS

Part B Authorised processes list

NORWICH CITY COUNCIL PART B AUTHORISATIONS HELD. A= AUTHORISED, R= REVOKED, W= WORKING ON, C= CLOSED

REFERENC	APPLICANT	ADDRESS	GRID	GRID REF	AUTH	DATE	PROCESS
Ε			REF	NORTHIN		PROCESS	
			EASTING	G		CEASED	
EPA91/11/ A	A WILLIAMS ABBEY LANE	1-4 ABBEY LANE KING	623652	308108	17-	31-Mar-03	W/ OIL BURNER < 0.4 MW NET
B1	GARAGE	STREET NORWICH			Mar-92		RATED THERMAL INPUT.
EPA91/13/ A	REVELL POTTERGATE	DRAYTON ROAD	622178	310177	17-		W/ OIL BURNER < 0.4 MW NET
B1	MOTORS	NORWICH			Mar-92		RATED THERMAL INPUT.
EPA91/15/ A	YOUNGS DOORS LTD	CITY ROAD WORKS	623468	307559	22-Oct-		TIMBER TREATMENT >500M2/YR
B1		NORWICH			92		
EPA91/3/B A	CITY OF NORWICH	EARLHAM ROAD	621199	308858	01-Oct-		THE INCINERATION OF HUMAN
1	CREMOTORIA	NORWICH			92		REMAINS
EPA91/5/B A	JR DAIN TRANSMISSIONS	45 WHIFFLER ROAD	621017	310944	17-		W/ OIL BURNER < 0.4 MW NET
1		NORWICH			Mar-92		RATED THERMAL INPUT.
EPA91/6/B A	B ROWLAND	ABBEY LANE KING	623641	308135	17-		W/ OIL BURNER < 0.4 MW NET
1		STREET NORWICH			Mar-92		RATED THERMAL INPUT.
EPA92/11/ R	HOLDEN GROUP BODY	4-6 WHIFFLER ROAD	621133	310782	20-Jul-		RESPRAYING OF ROAD VEHICLES
B3	REPAIR CENTRE	NORWICH			94		>2T VOC.
EPA92/12/ R	R ROBINSONS & CO (MOTOR		622358	301374		01-Aug-01	RESPRAYING OF ROAD VEHICLES
B3	SERVICES) LTD	HEIGHAM STREET			Aug-96		>2T VOC.
		NORWICH					
EPA92/13/ R	MANN EGERTON & CO LTD	VULCAN ROAD NORTH	622174	312221	28-Jul-		RESPRAYING OF ROAD VEHICLES
B3		NORWICH			94		>2T VOC.
EPA92/18/ A	DESIRA BODY CENTRE	WHITING ROAD	622934	306147	28-Jul-		RESPRAYING OF ROAD VEHICLES
B3		NORWICH			94		>2T VOC.
EPA92/2/B A	ANGLIA LEAD LTD	49 BARKER STREET	622260	309698	31-		FOUNDRY PROCESS FOR THE
2		NORWICH			Mar-93		MELTING AND RECASTING OF
ED 1 00 /0 /D 1	DE4D40DETE TD	4 7110000 0040		22224			LEAD
EPA92/3/B A	READICRETE LTD	1 THORPE ROAD	623615	308212			BLENDING, LOADING AND USE OF
2		NORWICH			Mar-93		BULK CEMENT INC. THE
							BATCHING OF READY-MIXED
ED 4 00 /E /D 4	DEDI AND ACCRECATE LTD	OLD CTATION DOAD	(04440	007000	40.1		CONCRETE
EPA92/5/B A	REDLAND AGGREGATES LTD	OLD STATION ROAD	624442	307220	18-Jan-		QUARRY PROCESS: ROADSTONE
2 EDA02/E/D A	CTART RITE CHOIC LTR	TROWSE	(22/72	210070	93		PLANT
EPA92/5/B A	START RITE SHOES LTD	CROME ROAD	623673	310079	28- Feb-94		ADHESIVE COATING PROCESS
3 EPA92/6/B R	LC JAY & SON LTD	NORWICH 19/21 OAK STREET	622754	200027		21 Mar 02	FOUNDRY PROCESS
	LC JAT & SUN LID		022/54	309027		o i-iviar-03	FOUNDRY PROCESS
2		NORWICH			93		

EPA92/6/B	A	LAURENCE SCOTT &	PO BOX 25 KERRISON	624449	307816 22-	
3		ELECTROMOTORS LTD	ROAD NORWICH	(22407	Mar-94	
EPA92/7/B	• А	RR FLEXO LTD	8-10 CONCORDE ROAD	622407	312030 12-	
3			NORWICH		May-94	PACKAGING - FLEXOGRAPHIC PRINTING
EPA92/8/B	BA	JARROLD PRINTING	WHITEFRIARS	623478	309313 19-Apr-	COATING PROCESS - THE
3			NORWICH		94	APPLICATION OF PRINTING INK TO PAPER
EPA92/9/B	ВА	BUSSEYS LTD	TOWER HOUSE 24	621138	310869 28-Jul-	RESPRAYING OF ROAD VEHICLES
3			WHIFFLER ROAD		94	>2T VOC.
			NORWICH			
EPA95/24/	Α	DIAMOND H CONTROLS	VULCAN ROAD NORTH	622065	312193 22-Jan-	COATING PROCESS - NITRIC ACID
B3			NORWICH		97	
EPA95/27/	Α	A & W CUSHION LTD	ST BENEDICTS	622434	309031 20-Jan-	MANUFACTURE OR TIMBER
B3			SAWMILLS BARN		97	
			ROAD NORWICH			TREATMENT OF TIMBER
EPA97/1	Α	NATIONAL C.R. CENTRES	1A FIFERS LANE	621842	312550 18-Oct-	RESPRAYING OF ROAD VEHICLES
		LTD	NORWICH		00	
EPA97/2	Α	J SAINSBURY	QUEENS ROAD	623232	307758	UNLOADING OF PETROL INTO
			NORWICH			STORAGE AT SERVICE STATIONS
EPA97/3	W	SPRAYAVIA INTERNATIONAL		621842	312987	RESPRAYING OF AIRCRAFT
EPA98/1	Α	Q8 NORWICH SOUTH	BARRETT ROAD	622928	306490	UNLOADING OF PETROL INTO
	_					STORAGE AT SERVICE STATIONS
EPA98/13	Α	SHELL	IPSWICH ROAD	622232	306465	UNLOADING OF PETROL INTO
ED 100/1/		0.0715 0551405 07.471011	B005 / 4115		000544	STORAGE AT SERVICE STATIONS
EPA98/16	Α	CASTLE SERVICE STATION	ROSE LANE	623434	308511	UNLOADING OF PETROL INTO
EDA00/17	۸	DINC DOAD SERVICE	MUE CDOCC LANE	(22200	211720	STORAGE AT SERVICE STATIONS
EPA98/17	А	RING ROAD SERVICE STATION	MILE CROSS LANE	622290	311720	UNLOADING OF PETROL INTO STORAGE AT SERVICE STATIONS
EPA98/18	٨	SHELL	SWEET BRIAR ROAD	620697	310803	UNLOADING OF PETROL INTO
EPA90/10	А	SHELL	SWEET BRIAR ROAD	020097	310003	STORAGE AT SERVICE STATIONS
EPA98/2	R	SAVE SERVICE STATION	58-62 DEREHAM ROAD	622223	308929	31-Mar-03 UNLOADING OF PETROL INTO
LFA70/2	K	SAVE SERVICE STATION	36-02 DEKEMANI KOAD	022223	300727	STORAGE AT SERVICE STATIONS
EPA98/21	Δ	MOUSEHOLD SERVICE	MOUSEHOLD LANE	624387	310782	UNLOADING OF PETROL INTO
LI A70/21	^	STATION	WOOSENGED EANE	024307	310702	STORAGE AT SERVICE STATIONS
EPA98/22	Δ	BLACK ARROW SERVICE	AYLSHAM ROAD	622430	310071	UNLOADING OF PETROL INTO
LITTIOIZZ	•	STATION	ALEST MAN ROAD	022 100	010071	STORAGE AT SERVICE STATIONS
EPA98/23	R	FIVEWAYS GARAGE	EARLHAM ROAD	619894	308434	31-Mar-03 UNLOADING OF PETROL INTO
_, , , , , , , ,						STORAGE AT SERVICE STATIONS
EPA98/25	Α	BROADSIDE FILLING	174 AYLSHAM ROAD	622092	310648	UNLOADING OF PETROL INTO
	-	STATION		- ·		STORAGE AT SERVICE STATIONS
EPA98/27	Α	SHELL ARLINGTON SERVICE	84 UNTHANK ROAD	622008	308093	UNLOADING OF PETROL INTO
		STATION				STORAGE AT SERVICE STATIONS

EPA98/33	Α	Q8	MARTINEAU LANE	624052	306813	UNLOADING OF PETROL INTO
						STORAGE AT SERVICE STATIONS
EPA98/4	Α	ST BENEDICTS FILLING	9 DEREHAM ROAD	622340	308928	UNLOADING OF PETROL INTO
		STATION				STORAGE AT SERVICE STATIONS
EPA98/41	Α	HARTWELL NORWICH	295 AYLSHAM ROAD	622053	310904	RESPRAYING OF ROAD VEHICLES
			NORWICH NR3 2RY			>1T VOC.
EPA98/8	Α	SHELL	PLUMSTEAD ROAD	625065	309467	UNLOADING OF PETROL INTO
						STORAGE AT SERVICE STATIONS
EPA99/01	Α	ATLAS AGGREGATES	GUARDIAN ROAD		12-Jan-	MOBILE CRUSHING PLANT
					00	
EPA99/01	Α	MORRISONS	ALBION WAY	624060	308054	UNLOADING OF PETROL INTO
						STORAGE AT SERVICE STATIONS
EPA99/02	Α	ATLAS AGGREGATES	GUARDIAN ROAD		12-Jan-	MOBILE CRUSHING PLANT
					00	
EPA99/03/	Α	NVWC	DENMARK HOUSE	622724	313511 01-Apr-	RESPRAYING OF ROAD VEHICLES
B2			JUPITER ROAD		00	>1T VOC.
EPA2000/0) A	LIND	BESSEMER ROAD	622809	305865 18-	RESPRAYING OF ROAD VEHICLES
1					May-00	>1T VOC.
EPA2000/0) T	HEATRAE SAUDIA	HURRICANE WAY	621869	312690 07-	PICKLING PLANT, APPLIED FOR
2					Dec-00	TIVIALITY
EPA2000/0) A	CONSTITUTION MOTORS	CONSTITUTION HILL	623347	310819 20-	UNLOADING OF PETROL INTO
3					Nov-00	STORAGE AT SERVICE STATIONS
EPA2000/0) A	EATON RISE SERVICE	IPSWICH ROAD	622089	305704 20-	UNLOADING OF PETROL INTO
4		STATION			Feb-01	STORAGE AT SERVICE STATIONS
EPA2000/0) A	NATIONWIDE	HALL ROAD	622252	305296 07-	RESPRAYING OF ROAD VEHICLES
5					Feb-01	>1T VOC.
EPA2000/0) A	NORWICH AUTO CENTRE	BESSEMER ROAD	622747	305881 27-	W/ OIL BURNER < 0.4 MW NET
6					Feb-01	RATED THERMAL INPUT.
EPA2000/0	W	TRINITY GARAGE	CAMBRIDGE STREET	621978	308028 26-	W/ OIL BURNER < 0.4 MW NET
7	_				Mar-01	RATED THERMAL INPUT.
EPA2000/0) A	BELVOIR GARAGE	BELVOIR STREET	621510	308656 01-	W/ OIL BURNER <0.4 MW NET
8	_				Mar-01	RATED THERMAL INPUT.
EPA2001/0) A	ROBINISONS	BARKER STREET	622366	309331 23-	RESPRAYING OF ROAD VEHICLES
1/B3		001110	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(01100	Feb-01	>1T VOC.
EPA2002/0) A	SOLUS	WHIFFLER ROAD	621133	310782 1.11.02	RESPRAYING OF ROAD VEHICLES
1/B3						>1T VOC.
EPA2002/0	А	BP SAFEWAY PARTNERSHIP	FIVE WAYS EARLHAM	619894	308434 20.3.03	UNLOADING OF PETROL INTO
2/		ODEENWAYO OADAGE (NO.)	ROAD	(00500	00/00/	STORAGE AT SERVICE STATIONS
EPA 98/9	W	GREENWAYS GARAGE (NCH)	GREENWAYS EATON	620502	306026	UNLOADING OF PETROL INTO
EDA 00/5	_	LTD	10/ 100 DADDAOK			STORAGE AT SERVICE STATIONS
EPA 98/5	С	INNERLINK MOTOR CO	126-128 BARRACK			UNLOADING OF PETROL INTO
			STREET			STORAGE AT SERVICE STATIONS

EPA 98/6	С	KEYWAY	420 DEREHAM ROAD		Ву	UNLOADING OF PETROL INTO
55.1.00/3	_	NODAWAL AEDWAE ATATION	DEDE!!!!! DO!D			STORAGE AT SERVICE STATIONS
EPA 98/7	С	NORWICH SERVICE STATION	DEREHAM ROAD		By	UNLOADING OF PETROL INTO
EDA 00/40	_	DUCCEY AND CARDEDTON	14/1 UEEL ED DOAD		31/12/99	
EPA 98/10	C	BUSSEY AND SABBERTON	WHIFFLER ROAD		By	UNLOADING OF PETROL INTO
EDA 00/44	_	FATON DIGE CEDIUSE	IDOMINAL DOAD			STORAGE AT SERVICE STATIONS
EPA 98/11	C	EATON RISE SERVICE	IPSWICH ROAD	Authorised above under nev		UNLOADING OF PETROL INTO
		STATION		reference	31/12/9	9 STORAGE AT SERVICE STATIONS
EPA 98/12	С	DONALD UTTING AND SON	2 GOLDSMITH STREET		Ву	UNLOADING OF PETROL INTO
		LTD				STORAGE AT SERVICE STATIONS
EPA 98/14	С	R ROBINSON AND CO LTD	HEIGHAM STREET		Ву	UNLOADING OF PETROL INTO
					31/12/99	
EPA 98/15	С	CONSTITUTION MOTORS	142 CONSTITUTION	Authorised above under nev		UNLOADING OF PETROL INTO
			HILL	reference	31/12/99	9 STORAGE AT SERVICE STATIONS
EPA 98/19	С	DOLPHIN AUTOS LTD	193 NELSON STREET		Ву	UNLOADING OF PETROL INTO
					31/12/99	STORAGE AT SERVICE STATIONS
EPA 98/20	С	QUEENS ROAD SERVICE	QUEENS ROAD		Ву	UNLOADING OF PETROL INTO
		STATION				STORAGE AT SERVICE STATIONS
EPA 98/24	С	AIRWAYS SERVICE STATION	FIFERS LANE		Ву	UNLOADING OF PETROL INTO
					31/12/99	
EPA 98/29	С	BUSSEY AND SABBERTON	THORPE ROAD		Ву	UNLOADING OF PETROL INTO
		LTD				STORAGE AT SERVICE STATIONS
EPA 98/30	С	PHOENIX	BRACONDALE		Ву	UNLOADING OF PETROL INTO
						STORAGE AT SERVICE STATIONS
EPA 98/32	С	TEAM SPIRIT	SPROWSTON ROAD		Ву	UNLOADING OF PETROL INTO
					31/12/99	
		THE BUILDERS DIRECT	MASON ROAD		Ву	BLENDING , PACKING AND
B2	A	SUUPPLY CO LTD	NORWICH			LOADING OF CEMENT -
		RUGBY CEMENT (NORWICH	RIVERSIDE NORWICH		By	BLENDING, LOADING AND USE OF
2	Α	DEPOT)			31/12/99	BULK CEMENT INC. THE
						BATCHING OF READY-MIXED
EDA04/40/	N1 /	LTUNMODE	42 HIDDICANE WAY		Dv	CONCRETE
		J TUNMORE	43 HURRICANE WAY		By	W/ OIL BURNER < 0.4 MW NET
B1	A N/	RHONE POULENC	NORWICH		31/12/99	RATED THERMAL INPUT.
		KHONE POULENC	SWEET BRIAR ROAD NORWICH		By	COMBUSTION PROCESS
B1 EDA01/2/P	A N/	DIAMOND H CONTROLS	VULCAN ROAD NORTH		31/12/99	ZINC DI-CASTING
2 EPA91/2/B	A	DIAMOND IL CONTROLS	NORWICH		By 31/12/99	THIC DI-CASTING
		PW TURNER	7 UNICORN YARD OAK	CTDEET	31/12/99 By	W/ OIL BURNER < 0.4 MW NET
1	A	FW IORNER	NORWICH	JINLLI	Бу 31/12/99	
	А		NORWICH		31/12/99	RATED THERWAL INFUT.

EPA91/8/B N/	I KNIGHTS	NORMAN BUILDINGS ROUEN	Ву	W/ OIL BURNER <0.4 MW NET
1 A	3 KWOM 3	ROAD NORWICH		RATED THERMAL INPUT.
EPA91/9/B N/	SC STONE	BELVOIR GARAGE 1A BELVOIR	By	W/ OIL BURNER <0.4 MW NET
1 A		STREET NORWICH		RATED THERMAL INPUT.
	TRIMOCO LTD (DELVES)	295 AYLSHAM ROAD		RESPRAYING OF ROAD VEHICLES
B3 A	,	NORWICH	31/12/99	
EPA92/19/ N/	EAST ANGLIAN MOTOR &	GARDEN STREET	Ву	RESPRAYING OF ROAD VEHICLES
B3 A	SHEET METAL CO LTD	NORWICH	31/12/99	>2T VOC.
EPA92/2/B N/	BEAVER ENGINEERING	BARNARD ROAD BOWTHORPE	Ву	PAINT SPRAYING PROCESS > 5 T
	GROUP PLC	NORWICH	31/12/99	
EPA92/4/B N/	NORWICH COACH WORKS	BURTON ROAD	9	RESPRAYING OF ROAD VEHICLES.
3 A		NORWICH	31/12/99	
	EAST ANGLIAN MOTOR &	GARDEN STREET NORWICH	Ву	RESPRAYING OF ROAD VEHICLES
	SHEET METAL CO LTD			>1T VOC.
	HENLYS OF NORWICH	78 MILE CROSS LANE		RESPRAYING OF ROAD VEHICLES
B3 A		NORWICH	31/12/99	
	ANC BODY CENTRE	VULCAN ROAD SOUTH NORWICH	By	RESPRAYING OF ROAD VEHICLES
B3 A	NODWICH CITY COUNCIL	MILE ODOCC DOAD MODWIOLI		>1T VOC.
	NORWICH CITY COUNCIL	MILE CROSS ROAD NORWICH	By	CHEMICAL TREATMENT OF TIMBER
B3 A			31/12/99	
	Revoked / Lapsed / Trivial / Closed / Withdrawn			
EPA91/1/B R		BOWTHORPE ROAD NORWICH	02- By	CLINICAL WASTE INCINERATOR
1	WEST NORWICH HOST TIAL	DOWNTOKI E ROAD NORWICH		<1 TONNE/HR.
-	D SLAUGHTER	125 OAK STREET NORWICH	17- By	W/ OIL BURNER <0.4 MW NET
B1	D GEAGGITTER	120 ONK OTKEET NOKWION		RATED THERMAL INPUT.
EPA91/14/ R	ANGLIAN WINDOWS	FIFERS LANE NORWICH	30- By	TIMBER TREATMENT >500M2/YR.
B1			Nov-92 31/12/99	
EPA91/2/B R	MALDON TIMBER	SWEET BRIAR IND ESTATE NORWICH	27- By	TIMBER TREATMENT >500M2/YR.
1			Mar-92 31/12/99	
EPA91/4/B R	J WALES ALPHA SHOP	UNIT 1 BEECH DRIVE MILE CROSS NORWICH	17- By	W/ OIL BURNER < 0.4 MW NET
1			Mar-92 31/12/99	RATED THERMAL INPUT.
EPA92/1/B R	FLORIDA SHOE FACTORY	DIBDEN ROAD NORWICH	30- By	ADHESIVE COATING PROCESS
3	(NORWICH) LTD		Mar-94 31/12/99	1
EPA92/14/ R	HEATRAE SADIA HEATING	HURRICANE WAY NORWICH	06-Oct- By	DI-ISOCYANATE PROCESS
B3	LTD		94 31/12/99	
EPA92/15/ R	HARTWELL NORWICH	MOUNTERGATE NORWICH	14- By	RESPRAYING OF ROAD VEHICLES
B3			Sep-94 31/12/99 10-Jan- By	>2T VOC.
	ASBESTOS CEMENT	88 DRAYTON ROAD NORWICH	10-Jan- By	THE INDUSTRIAL FINISHING OF
2	DISTRIBUTORS			ANY ASBESTOS PRODUCT.
	PR BULLARD 'PETES	BARN ROAD NORWICH	16-Jul- By	
B1	MOTORS'			RATED THERMAL INPUT.
EPA93/20/ R	START-RITE SHOES	CROME ROAD NORWICH	22- By	DI-ISOCYANATE PROCESS

		Aug-94 31/12/99
READY MIXED CONCRETE	c/o ATLAS AGG. LTD GUARDIAN	17- By MOBILE CONCRETE CRUSHING
(UK) LTD	ROAD NORWICH	May-94 31/12/99 PLANT
LIND OF NORWICH LTD	120 BER STREET NORWICH	By RESPRAYING OF ROAD VEHICLES
		31/12/99 >1T VOC.
OAKSTEAD SERVICE	240 DEREHAM ROAD	By UNLOADING OF PETROL INTO
STATION		31/12/99 STORAGE AT SERVICE STATIONS
OAKSTEAD SERVICE	86 DRAYTON ROAD	By UNLOADING OF PETROL INTO
STATION		31/12/99 STORAGE AT SERVICE STATIONS
SAINSBURYS	BOWTHORPE	14- By UNLOADING OF PETROL INTO
		Feb-99 31/12/99 STORAGE AT SERVICE STATIONS
LEX FORD NORWICH	591 HALL ROAD NORWICH	14- By RESPRAYING OF ROAD VEHICLES
		Dec-94 31/12/99 >2T VOC.
HEATRAE SADIA HEATING	HURRICANE WAY NORWICH	25- By METAL DECONTAMINATION.
LTD		Mar-94 31/12/99 AUTOMATICALLY
BRITISH ELECTRICAL	LANSDOWNE ROAD FIFERS LANE	19- By THE DECONTAMINATION OF
REPAIRS LTD (B.E.R.L.)	NORWICH	Nov-93 31/12/99 METAL.
CONSTITUTION MOTORS	142 CONSTITUTION	01- By W/ OIL BURNER < 0.4 MW NET
	HILL NORWICH	Feb-99 31/12/99 RATED THERMAL INPUT.
EATON INTERNATIONAL LTD.	HALL ROAD NORWICH	16- By ADHESIVE COATING PROCESS
		May-94 31/12/99
MANCROFT SERVICE	84-108 BER STREET	By UNLOADING OF PETROL INTO
STATION		31/12/99 STORAGE AT SERVICE STATIONS
	(UK) LTD LIND OF NORWICH LTD OAKSTEAD SERVICE STATION OAKSTEAD SERVICE STATION SAINSBURYS LEX FORD NORWICH HEATRAE SADIA HEATING LTD BRITISH ELECTRICAL REPAIRS LTD (B.E.R.L.) CONSTITUTION MOTORS EATON INTERNATIONAL LTD.	(UK) LTD ROAD NORWICH LIND OF NORWICH LTD 120 BER STREET NORWICH OAKSTEAD SERVICE 240 DEREHAM ROAD STATION OAKSTEAD SERVICE 86 DRAYTON ROAD STATION SAINSBURYS BOWTHORPE LEX FORD NORWICH 591 HALL ROAD NORWICH HEATRAE SADIA HEATING HURRICANE WAY NORWICH LTD BRITISH ELECTRICAL LANSDOWNE ROAD FIFERS LANE REPAIRS LTD (B.E.R.L.) NORWICH CONSTITUTION MOTORS 142 CONSTITUTION HILL NORWICH EATON INTERNATIONAL LTD. HALL ROAD NORWICH MANCROFT SERVICE 84-108 BER STREET

Appendix 4 Descriptions of selected models and tools

CONTENTS

Screening models
Design Manual for Roads and Bridges (DMRB)

Design Manual for Roads and Bridges (DMRB) - This screening method was formulated by the Highways Agency. The method gives a preliminary indication of air quality near roads. It is a simple procedure based on a tabulated input interface, which produces an estimate of concentrations at receptor locations defined by the user.

The DMRB method requires information on vehicle flow, HGV mix, vehicle speed and receptor-road distances. It contains a useful database of vehicular emission factors for future years. All the relevant AQS pollutants can be estimated.

More details of the model can be found at:

http://www.highways.gov.uk/contracts/index.htm

Appendix 5 Report Checklist

USA Checklist from http://www.uwe.ac.uk/aqm/review/checklists/usalist.doc

Criteria	Met?	Report Location
Brief Outcomes of Previous Round summarised?	Ö	In each pollutant chapter and introduction
Which objectives are being taken to a Detailed Assessment?	Ö	Executive summary
		-
Carbon Monoxide		-
A) Monitoring data (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	3.6
B) Very Busy Roads/Junctions (Background? Roads/ junctions? Exposure? Data? Calculations? Exceedences?)	Ö	3.7
CONCLUSION (Detailed assessment? For What?)	Ö	3.8
Benzene		
A) Monitoring data (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	4.6
B) Very Busy Roads/Junctions (Background? Roads/ junctions? Exposure? Data? Calculations? Exceedences?)	Ö	4.7
C) Industrial Sources (Emissions data? Nomogram? Exceedences? Neighbouring authorities?)	Ö	4.8
D) Petrol Stations (Throughput? Busy Road? Exposure?)	Ö	4.9
E) Major fuel storage depots (petrol only) (Emissions? Exposure? Fugitive? Nomogram?)	Ö	4.10
CONCLUSION (Detailed assessment? For what?)	Ö	4.11
1,3-butadiene		
A) Monitoring data (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	5.6
B) New Industrial Sources (Air Quality Assessments? Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	5.7
C) Industrial Sources with Substantially Increased Emissions (Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	5.7
CONCLUSION (Detailed assessment? For what?)	Ö	5.8
Lead A) Monitoring data (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	6.5
B) New Industrial Sources (Air Quality Assessments? Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	6.6
C) Industrial Sources with Substantially Increased Emissions (Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	6.6
CONCLUSION (Detailed assessment? For what?)	Ö	6.7
Nitrogen Dioxide		
A) Monitoring data outside an AQMA (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	7.6
B) Monitoring data inside an AQMA (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Compliance?)	Ö	7.6

C) Narrow congested streets with residential properties close to the kerb (Background? Roads? Exposure? Data? Calculations? Width? Canyon Factor? Exceedences?)	Ö	7.7.1
D) Junctions (Background? Junctions? Exposure? Data? Calculations? Exceedences?)	Ö	7.7.2
E) Busy streets where people may spend 1hour or more close to traffic (Background? Roads 10 000 vpd? Exposure? Distance 5m or less? Data? Calculations? Exceedences?)	Ö	7.8
F) Roads with a high flow of buses and/or HGVs (Background? Roads >2500 HDV? Exposure? Data? Calculations? Exceedences?)	Ö	7.8
G) New roads constructed or proposed since the first round of R&A (Background? Roads/junctions? Air Quality Assessments? Exposure? Data? Calculations? Exceedences?)	Ö	7.8
H) Roads close to the objective during the first round of R&A (Roads/ junctions 36-40□g/m3? Exposure?)	Ö	7.8
I) Roads with significantly changed traffic flows (Background? Roads with 25% increase? Exposure? Data? Calculations? Exceedences?)	Ö	7.8
J) Bus stations (>1,000 buses per day? Data? Calculations? Exposure? Exceedences?)	Ö	7.10.1
K) New Industrial Sources (Air Quality Assessments? Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	7.9
L) Industrial Sources with Substantially Increased Emissions (Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	7.9
M) Aircraft (Exposure < 1000m from boundary? Passenger throughput > 5mppa?)	Ö	7.10.2
CONCLUSION (Detailed assessment? For what?)	Ö	7.11
Sulphur Dioxide		
A) Monitoring data outside an AQMA (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	8.5
B) Monitoring data inside an AQMA (New data? No of sites? Equipment/ QA/QC/ Exposure/ Worst case? Compliance?)	Ö	8.5
C) New Industrial Sources (Air Quality Assessments? Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	8.6
D) Industrial Sources with Substantially Increased Emissions (Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	8.6
E) Areas of Domestic Coal Burning (>100 premises by 0.5 km2?)	Ö	8.7
F) Small Boilers > 5 MW(thermal) (coal / fuel oil burning boilers? Exposure within 500m? Emissions? Nomogram?)	Ö	8.6.1
G) Shipping (Exposure within 1km? > 5000 movements per year?)	Ö	8.8.1
H) Railway Locomotives (stationary diesel locomotives for >15min? Exposure <15m?)	Ö	8.9
CONCLUSION (Detailed assessment? For what?)		
PM10		
A) Monitoring data outside an AQMA (New data? No of sites? Equipment/ Gravimetric/QA/QC/ Exposure/ Worst case? Projected Exceedences?)	Ö	9.5
B) Monitoring data inside an AQMA (New data? No of sites? Equipment/ Gravimetric/QA/QC/ Exposure/ Worst case? Compliance?)	Ö	9.5

C) Busy Roads and junctions (Scotland only) (Background? Roads/ junctions? Exposure? Data? Calculations? Exceedences?)	Ö	9.6.1
D) Junctions (Not Scotland) (Background? Junctions? Exposure? Data? Calculations? Exceedences?)	Ö	9.6.2
E) Roads with a high flow of buses and/or HGVs (Background? Roads >20% HDV? Exposure? Data? Calculations? Exceedences?)	Ö	9.6.3
F) New roads constructed or proposed since the first round of R&A (Background? Roads/junctions? Air Quality Assessments? Exposure? Data? Calculations? Exceedences?)	Ö	9.6.3
G) Roads close to the objective during the first round of R&A (Roads/ junctions 30-36 24-hour exceedences of 50 □ g/m3? Exposure?)	Ö	9.6.3
H) Roads with significantly changed traffic flows (Background? Roads/ junctions? Exposure? Data? Calculations? Exceedences?)	Ö	9.6.3
I) New Industrial Sources (Air Quality Assessments? Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	9.7
J) Industrial Sources with Substantially Increased Emissions (Emissions data? Nomogram? Fugitive? Exceedences? Neighbouring authorities?)	Ö	9.7
K) Areas of Domestic Coal Burning (>50 premises by 0.5 km2?)	Ö	9.8.2
L) Quarries/landfill sites/opencast coal/handling of dusty cargoes at ports etc. (Exposure? Dust concerns? Background?)	Ö	9.8.1
M) Aircraft (Exposure < 500m from boundary? Passenger throughput > 10 mppa? > 5 mppa in Scotland?)	Ö	9.9.1
CONCLUSION (Detailed assessment? For what?)	Ö	9.10